首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The recent shift of Rhagoletis pomonella Walsh (Diptera: Tephritidae) from its ancestral host hawthorn to apple is a model for incipient sympatric speciation in action. Previous studies have shown that changes in the over‐wintering pupal diapause are critical for differentially adapting R. pomonella flies to a difference in the fruiting times of apples vs. hawthorns, generating ecologically based reproductive isolation. Here, we exposed pupae of the hawthorn race to various combinations of pre‐ and over‐wintering rearing conditions and analyzed their effects on eclosion time and genetics. We report certain unexpected results in regards to a combination of brief pre‐winter and over‐wintering periods indicative of gene*environment interactions requiring a reassessment of our current understanding of R. pomonella diapause. We present a hypothesis that involves physiological factors related to stored energy reserves in pupae that influences the depth and duration of Rhagoletis diapause. This ‘pupal energy reserve’ hypothesis can account for our findings and help clarify the role host plant‐related life history adaptation plays in phytophage biodiversity.  相似文献   

2.
In commercial oil palm plantations in Costa Rica, we tested the hypotheses that pupation site and emergence time affect the mating success of protogynous female bagworms,Oiketicus kirbyi (Guilding) (Lepidoptera: Psychidae). Greater proportions of female than male pupae on upper leaves of oil palms and greater proportions of mated females in the upper rather than lower crown strata support the hypothesis that selection of pupation site by female larvae influences the mating success of adults. Increasing captures of males with increasing trap height further suggest that enhanced mating success of females in tree tops may be attributed either to most effective dissemination of sex pheromone on higher sites, or to males foraging predominantly in the upper strata of oil palms. As the majority of females pupated in the middle rather than upper crown of oil palms, selection of pupation site by females may be affected by additional as yet unknown factors. Emergence of females significntly preceded emergence of males. Increasing proportions of mated females throughout the emergence seasons probably resulted from an increased ‘availability’ of males. In tropical rainforests with local variations inO. kirbyi developmental time and stage, protogyny may represent an evolutionary strategy that furthers outbreeding.  相似文献   

3.
    
The shift of the apple (AP) maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), from its ancestral host downy hawthorn, Crataegus mollis (DH) (Torr. & A. Gray) Scheele, to introduced domesticated AP, Malus domestica Borkh. (both Rosaceae), is a model for ecological divergence and incipient sympatric speciation with gene flow. However, a portion of the variation contributing to the sympatric host shift from DH to AP appears to have a different biogeographic history, pre‐dating the shift. One potential source of standing variation may trace to a number of different native hawthorn species infested by R. pomonella in the southern USA, where the AP‐attacking race is absent. Herein, we investigate this possibility for the southern red hawthorn (SR) endemic to Texas, Crataegus mollis var. texana (Buckl.), which has been described as a member of the Molles series that includes the more northern distributed DH. We report results from chemical analyses of host fruit volatiles, fly behavioural responses to synthetic fruit blends, and microsatellite surveys of fly populations, implying that R. pomonella infesting SR may behaviourally and genetically represent a native host race differing from the DH‐infesting fly. No fly reared from SR responded to AP fruit volatiles in flight tunnel assays. However, coupled gas chromatographic‐electroantennographic detection (GC‐EAD) profiles for SR fruit contain all five of the component esters that comprise the standard AP volatile blend inducing behavioural orientation for AP‐infesting flies, compounds that appear to be largely missing from volatile profiles for DH fruit. Thus, SR‐infesting flies do not represent a source for a preassembled AP‐accepting phenotype. However, they may help explain why the ancestral DH race that shifted to AP in the northeastern USA had the ability to recognize AP fruit esters, potentially enabling the shift to AP. Our results highlight how categorizing speciation into different geographic modes may not adequately describe the evolutionary origins of important genetic variation fuelling adaptive radiation and the genesis of new biodiversity.  相似文献   

4.
5.
6.
    
In order to improve perimeter trapping for apple maggot fly behavioral control, we designed a set of experiments which aimed to reach a better understanding of the nature of the interaction between the natural host odor released by susceptible and low‐susceptibility apple cultivars, and an artificial host odor currently employed as a lure along with visual traps for apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), perimeter trapping programs. The response of apple maggot flies to lured and unlured visual traps deployed in different rectangular arrays of susceptible and low‐susceptibility apple cultivars (two central trees of a particular cultivar surrounded by four perimeter trees of the same or a different cultivar) was evaluated over 2 years under field conditions. In uniform blocks of susceptible (Tidemann Red, Jersey Mac) or low‐susceptibility (Marshall McIntosh) cultivars, lured traps recovered a significantly greater proportion of the total capture than unlured traps, irrespective of lure position (center or perimeter trees). Unlured traps on central susceptible apple cultivars (Red Astrachan, Gala, Fuji) recovered a significantly greater proportion of the total capture than unlured traps on surrounding low‐susceptibility cultivars (Marshall McIntosh, Paula Red, Red Delicious, and Golden Delicious). Placing the lures near traps on low‐susceptibility cultivar trees surrounding unlured traps on central susceptible cultivar trees reduced apple maggot fly visits to traps on central trees, but the latter still recovered a similar proportion of the total capture as lured traps on perimeter trees. By contrast, placing the lures near traps on central susceptible cultivar trees surrounded by unlured traps on low‐susceptibility cultivar trees allowed lured central traps to receive a significantly greater proportion of the total capture than unlured perimeter traps. We conclude that the synthetic and natural host odor of susceptible cultivars interact additively in attracting apple maggot flies to visual traps, and that, when given the choice, traps and lures should be deployed on preferred rather than on less preferred cultivar trees. Implications for trap deployment strategies for tephritid monitoring and control are discussed in the light of our findings.  相似文献   

7.
    
Eurosta solidaginis Fitch (Diptera: Tephritidae) has formed host races on Solidago altissima L. and Solidago gigantea Ait. (Asteraceae), and reproductive isolation between these host races is brought about in part by host‐associated assortative mating. Any non‐assortative mating creates the potential for gene flow between the populations, and we investigated the conditions that favored non‐assortative mating. We hypothesized that the frequency of non‐assortative mating would be influenced by differences in the behaviors of the host races and sexes and by the presence and pattern of distribution of the two host species. To test these hypotheses, we caged flies on four combinations of 32 potted host plants: all S. altissima, all S. gigantea, and cages with both host species arranged in either two pure species blocks or randomly dispersed. We recorded the number of flies of each host race that alighted on each host species and the frequency of mating within and between the host races. Males of both host races were observed on plants more frequently than females. Flies of the host race from S. gigantea (gig flies) were observed on plants in greater absolute numbers, and they mated more frequently than flies of the host race from S. altissima (alt flies). In all treatments, gig flies of both sexes were found on non‐natal host plants significantly more frequently than alt flies, and gig females showed a weaker preference for their host species than did gig males or alt flies of either gender for their respective natal hosts. Assortative mating predominated in all treatments, and flies from each host race mated more frequently in cages containing their own host plant. The frequency of non‐assortative mating varied among treatments, with the matings between alt ♀ × gig ♂ being more common in the pure S. altissima treatment and the gig ♀ × alt ♂ being more frequent in the pure S. gigantea and random treatments. Matings between gig ♂ × alt ♀ were more common overall than the reciprocal mating, because gig males were more active in pursuing matings and in alighting on the non‐natal host plant than alt flies. Non‐assortative matings were more frequent in the random than in the block treatments, but this difference was not significant. Because of strong selection against oviposition into the alternate host, we hypothesized that host plant distribution would not affect oviposition preference. We tested this hypothesis by examining the oviposition behavior of naïve, mated females in two treatments in which both host species were present: either arranged in blocks or randomly dispersed. Females oviposited only into their natal host, regardless of host plant distribution.  相似文献   

8.
    
The textbook version of sympatric host race formation in Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) features an ancestral hawthorn-infesting race and a derived apple race differing in life-history timing and response to host fruit odor. However, previous research has focused largely on northeastern North America. To investigate life-history timing in poorly studied southeastern North American populations with very diverse hosts, we performed common garden experiments on emergence time on six southern R. pomonella populations and four other R. pomonella species-group populations. Findings were: (1) the diverse adult emergence times of southern populations resulted largely from genetic differences; (2) some southern populations had bimodal emergence curves; (3) correlations of allozyme markers and emergence times were uncommon in southern populations; and (4) mean emergence times from common garden rearings and dates of field collection of the populations were strongly correlated.  相似文献   

9.
    
Rhagoletis pomonella Walsh (Diptera: Tephritidae) originating from domesticated apple (Malus pumila), hawthorn (Crataegus mollis) (Rosaceae), and flowering dogwood (Cornus florida) (Cornaceae) were tested sequentially in flight‐tunnel assays to volatile blends previously identified from the three fruit types. The majority of flies flew to odor sources containing their natal blend (68–83%). Some flies from each fruit type also flew to non‐natal fruit blends (11–39%), but of these non‐natal responders the vast majority were flies that responded to their natal blend as well. The results indicate that individual flies within R. pomonella populations infesting different host types have different degrees of specificity with respect to discriminating among fruit volatile blends, and that a moderate proportion of apple, hawthorn, and dogwood flies (10–30%) are broad responders, with the capacity to recognize and orient to more than one blend. The observed variability in response specificity could facilitate sympatric shifts to new host plants.  相似文献   

10.
Despite an increasing acceptance in the biological community for sympatric speciation as a mode of species formation, well documented examples of sympatrically evolved ‘incipient species’ remain rare. The sympatric host races of apple maggot, Rhagoletis pomonella (Walsh), represent one of the most prominent case studies for sympatric speciation via a host shift. The European cherry fruit fly, R. cerasi (L.), shows strong ecological similarities to R. pomonella: (1) infestation of two different host plants, Lonicera xylosteum L. and Prunus avium L., and (2) divergent phenological and behavioral adaptations of flies on different hosts. The population genetic study presented here addresses whether the host associated populations of R. cerasi also represent genetically differentiated true host races. Out of a total of 29 allozyme loci examined, six were polymorphic and used to analyze six sympatric pairs of R. cerasi populations on Lonicera and Prunus from Switzerland and Germany. A direct comparison of allele frequencies between sympatric sites showed no pattern indicative of host races in R. cerasi. However, the hierarchical F‐statistic for one locus, mannose 6‐phosphate isomerase (Mpi), showed significant population differentiation that was in accordance with host race differentiation. Mpi is one of several loci that are also diagnostic for host race differentiation in R. pomonella. Results from Mpi suggest the formation of sympatric host races in R. cerasi, but additional polymorphic markers are necessary.  相似文献   

11.
The apple maggot fly, Rhagoletis pomonella, Walsh (Diptera: Tephritidae), provides a unique opportunity to address the issue of host-related fitness trade-offs for phytophagous insects. Rhagoletis pomonella has been controversial since the 1860's when Benjamin Walsh cited the fly's shift from hawthorn (Crataegus spp.) to apple (Malus pumila) as an example of an incipient sympatric speciation event. Allozyme and mark-release-recapture studies have subsequently confirmed the status of apple and hawthorn flies as partially reproductively isolated and genetically differentiated host races, the hypothesized initial stage in sympatric divergence. Here, we review the ecological and genetic evidence for host-plant mediated selection in R. pomonella. We reach the following three major conclusions: First, although developmental timing is not everything, it is a good deal of the story. Differences in the fruiting phenologies of apple and hawthorn trees exert different selection pressures on the diapause and eclosion time characteristics of the host races. In particular, the 3-week earlier mean fruiting phenology of apples in eastern North America appears to select for a slower rate of metabolism or deeper pupal diapause in apple than hawthorn flies. Second, host-related fitness trade-offs for R. pomonella may not be due to disruptive selection affecting any one specific life-history stage. Rather, it is the sum total of directional selection pressures acting across different life-stages that generates divergent selection on apple and hawthorn flies. For example, selection favors the alleles Me 100, Acon-2 95 and Mpi 37 (or linked genes) in the larval stage in both host races. However, these same alleles are disfavored in the pupal stage to follow, where they correlate with early adult eclosion, and by inference premature diapause termination. Because apple trees fruit an average of 3 weeks earlier than hawthorn trees, this counter-balancing selection is stronger on apple-fly pupae. The net result is that the balance of selective forces is different between apple and hawthorn flies, helping to maintain the genetic integrity of the host races in sympatry in the face of gene flow. Finally, natural R. pomonella populations harbor a good deal of genetic variation for development-related traits. This variation allows fly populations to rapidly respond to temporal vagaries in local environmental conditions across years, as well as to broad-scale geographic differences that exist across the range of the species. Perhaps most importantly, this variation gives R. pomonella the flexibility to explore and adapt to novel plants. Taken together, our results underscore how difficult it can be to document host plant-related fitness trade-offs for phytophagous insects due to the need to consider details of the entire life-cycle of a phytophagous insect. Our findings also show how reproductive isolation can arise as a by-product of host-associated adaptation in insects, a central theme for models of sympatric speciation via host shifts.  相似文献   

12.
    
Host-plant dependent fitness trade-offs refer to traits that enhance the performance of an insect on one plant species to its detriment on others. Such trade-offs are central to models of sympatric speciation via host shifts, but have proven difficult to empirically demonstrate. Here, we test for host-plant dependent selection on larvae of apple (Malus pumila L.)- and hawthorn (Crataegus mollis L. spp.)-infesting races of Rhagoletis pomonella (Walsh). Samples of larvae were reared in the field and under protective conditions in a garage. Our rationale was that the garage should slow rates of fruit rot relative to the field, relaxing selection pressures associated with declining fruit quality. Four findings emerged from the study. (1) Larvae suffered higher mortality in fruits in the field than the garage. (2) The increase in mortality was greater for larvae in haws. (3) Larvae possessing the alleles Me 100, Acon-2 95, and Mpi 37, three allozymes displaying host-related differentiation in R. pomonella that map to linkage group II in the fly, left fruits earlier than other genotypes. (4) Allele frequencies for Me 100, Acon-2 95, and Mpi 37 were significantly higher in both apple and haw larvae surviving the field versus the garage treatment. Our results suggested that field conditions favored larvae that rapidly developed and left rotting fruits. Since these individuals tended to possess the alleles Me 100, Acon-2 95, and Mpi 37, frequencies of these allozymes were higher in the field. Selection on larvae was directional for Me 100, Acon-2 95, and Mpi 37 (or linked genes) in both host races. We previously showed that these same alleles can be disfavored in the pupal stage, especially in the apple race, where they correlate with premature diapause termination. Fitness trade-offs in Rhagoletis may therefore be due as much to differences in the relative strengths of directional selection pressures acting on different life stages as to disruptive selection affecting any one particular stage. The necessity to consider details of the entire life-cycle highlights one of the many challenges posed to documenting fitness trade-offs for phytophagous insects.  相似文献   

13.
    
Host plant-associated fitness trade-offs are central to models of sympatric speciation proposed for certain phytophagous insects. But empirical evidence for such trade-offs is scant, which has called into question the likelihood of nonallopatric speciation. Here, we report on the second in a series of studies testing for host-related selection on pupal life-history characteristics of apple- (Malus pumila L.) and hawthorn- (Crataegus mollis L. spp.) infesting races of the Tephritid fruit fly, Rhagoletis pomonella (Walsh). In particular, we examine the effects of winter length on the genetics of these flies. We have previously found that the earlier fruiting phenology of apple trees exposes apple-fly pupae to longer periods of warm weather preceding winter than hawthorn-fly pupae. Because R. pomonella has a facultative diapause, we hypothesized that this selects for pupae with more recalcitrant pupal diapauses (or slower metabolic/development rates) in the apple-fly race. A study in which we experimentally manipulated the length of the prewintering period for hawthorn-origin pupae supported this prediction. If the period preceding winter is important for apple- and hawthorn-fly pupae, then so too should be the length (duration) of winter; the rationale for this prediction is that “fast developing” pupae that break diapause too early will deplete their energy reserves and disproportionately die during long winters. To test this possibility, we chilled apple- and hawthorn-origin pupae collected from a field site near Grant, Michigan, in a refrigerator at 4°C for time periods ranging from one week to two years. Our a priori expectation was that longer periods of cold storage would select against allozyme markers that were associated with faster rates of development in our earlier study. Since these electromorphs are typically found at higher frequencies in hawthorn flies, extending the overwintering period should favor “apple-fly alleles” in both races. The results from this “overwinter” experiment supported the diapause hypothesis. The anticipated genetic response was observed in both apple and hawthorn races, as allele frequencies became significantly more “apple-fly-like” in eclosing adults surviving longer chilling periods. This indicates that it is the combination of environmental conditions before and during winter that selects on the host races. Many tests for trade-offs fail to adequately consider the interplay between insect development, host plant phenology, and local climatic conditions. Our findings suggest that such oversight may help to explain the paucity of reported fitness trade-offs.  相似文献   

14.
Ovipositional responses of apple maggot (AM), Rhagoletis pomonella (Walsh), females were studied in the laboratory on apples (var: Golden Delicious) treated with different rates of four protein hydrolysate baits in choice and no-choice tests. Protein hydrolysate baits at rates of 0.5 and 1% had no significant effect, but oviposition was greatly reduced at higher rates of 5 and 10%. Apple maggot females exposed to apples treated with protein hydrolysate baits at a rate of 10% made 41–71% fewer punctures and laid 41–73% fewer eggs than in untreated control. No oviposition activity was shown on apples treated with 25 and 100% Nulure®. In no-choice tests the AM females laid 75–96% fewer eggs in apples treated with 10 and 25% Nulure compared to controls and no oviposition occurred in apples treated with 100% Nulure. Apple maggot females arrived in similar numbers on apples treated with 10% Nulure and untreated apples, but only 5% of those arriving on Nulure-treated apples showed ovipositor boring with no egg deposition while 60% of females arriving on untreated apples showed ovipositor boring activity and laid an average of 2.5 eggs per apple. In another experiment, individual AM females displayed similar behavioral responses to 10% Nulure-treated apples; none of the 56 females tested on treated apples displayed ovipositor boring activity, but 59% of the females (N=56) tested on untreated apples displayed ovipositor boring within 5 min of their arrival. Ninetyeight percent of AM females stayed and fed on fruit surfaces for 5 min on Nulure-treated apples without ovipositor boring compared to only 2% on untreated apples. Of the females that arrived on untreated apples, 39% flew away within 5 min without ovipositor boring compared to only 2% of those that arrived on Nulure-treated apples. Results of these two behavioral experiments suggest that upon arrival on a protein bait-treated apple, an apparent change of behavior occurs in AM females and instead of attempting to oviposit, they attempt to feed on fruit surfaces resulting in reduced oviposition activity. These results indicate that the feeding and oviposition-related activities of AM females are probably mutually exclusive and that the feeding behavior preempts oviposition activities on host fruits treated with higher rates of protein hydrolysate baits.  相似文献   

15.
    
Geography is often a key factor facilitating population divergence and speciation. In this regard, the geographic distributions of flies in the genus Rhagoletis (Diptera: Tephritidae) in temperate North America have been affected by cycles of Pleistocene glaciation and interglacial periods. Fluctuations in climatic conditions may have had their most dramatic effects on geographically isolating Rhagoletis flies in the central highland region of Mexico. During past periods of allopatry, a degree of post‐zygotic reproductive isolation appears to have evolved between hawthorn‐infesting populations of Rhagoletis pomonella (Walsh) in the central Eje Volcanico Trans Mexicano (EVTM) and those from the Sierra Madre Oriental Mountains (SMO) of Mexico, as well as hawthorn flies from the eastern USA. Here, we investigate the generality of this finding in the genus Rhagoletis by testing for reproductive isolation among populations of Rhagoletis cingulata (Loew) (Diptera: Tephritidae) collected from infested domesticated sweet cherry (Prunus avium L.) in the USA and black cherry [Prunus serotina Ehrh. (both Rosaceae)] from the SMO and EVTM. We report evidence for marked post‐mating reproductive isolation among certain R. cingulata populations. The high levels of reproductive isolation were observed between R. cingulata flies from populations in the USA and SMO differed from the pattern seen for R. pomonella, primarily involving the EVTM. In addition, egg hatch was significantly reduced for crosses between SMO males and EVTM females, but not greatly in the opposite direction. We discuss potential causes for the different patterns of post‐mating reproductive isolation among Rhagoletis flies.  相似文献   

16.
Two outbreaks of Streptococcus suis ST7 occurred in humans in 1998 and 2005 in China. PFGE of chromosome restriction fragments found all ST7 isolates to be indistinguishable. Due to the genetic homogeneity of ST7 isolates, development of a rapid sub‐typing method with high discriminatory power for ST7 isolates is required. In this study, a novel method, MLVA, was developed to type S. suis serotype 2 strains. Further, this method was used to analyze outbreak‐associated ST7 strains in China. A total of 144 ST7 S. suis isolates were sub‐typed into 34 MLVA types. Among these, eight isolates from the 1998 outbreak were sub‐typed into five MLVA types, of which four MLVA types were also detected in Sichuan in 2005. These data indicate that the pathogens responsible for the two outbreaks had the same origin. In addition, some observations also provided molecular evidence for the transmission route, possibly indicating that the MLVA method has usefulness in epidemiology. The developed MLVA scheme for S. suis has greater discriminative power than PFGE. The method described here may be useful for identifying the source of S. suis infection and monitoring its spread.  相似文献   

17.
In previous studies, we have shown that apple and hawthorn populations of Rhagoletis pomonella (Diptera: Tephritidae) represent partially reproductively isolated and genetically differentiated host races; a result consistent with predictions of sympatric speciation models. The geographic pattern of allozyme variation for these flies is complex, however, as inter-host differences are superimposed on latitudinal allele frequency clines within the races. In addition, pronounced allele frequency shifts exist among R. pomonella populations across three major ecological transition zones in the mid-western United States. This suggests that selection related to environmental heterogeneity is responsible for the allele frequency shifts, but does not rule out secondary contact as an alternative possibility. Resolution of this issue is important, because if secondary contact is involved, then we would have to reassess the relationship host race formation has with speciation in the R. pomonella group.Here, we present results from a detailed genetic analysis of fly populations spanning the deciduous/prairie transition zone near the border between the states of Wisconsin and Illinois. Allele frequencies for hawthorn populations within the zone formed spikes, rather than the expected steps, and these frequency peaks correlated with variation in local ambient temperature conditions. Ambient temperature, and not secondary contact, therefore appears to be an important determinant of the shape of R. pomonella allele frequency clines. Allele frequency heterogeneity was also observed among apple populations, but was less pronounced compared to that for hawthorn flies. This suggests that ambient temperature differentially affects the host races, possibly through differences in the fruiting phenologies of apple and hawthorn trees. Several pairs of linked loci displayed concordant allele frequency changes and were in disequilibrium among both apple and hawthorn populations along the Wisconsin/Illinois transect. Although we do not know the reason for the observed pattern of disequilibrium, site to site variation in levels of inter-host migration, coupled with selection, seem the most likely explanations. We conclude by discussing how host specific adaptations, such as those associated with ambient temperature, may interact with host recognition traits to drive the sympatric speciation process for R. pomonella group flies.  相似文献   

18.
Wolbachia infect a variety of arthropod and nematode hosts, but in arthropods, host phylogenetic relationships are usually poor predictors of strain similarity. This suggests that new infections are often established by horizontal transmission. To gain insight into the factors affecting the probability of horizontal transmission among host species, we ask how host phylogeny, geographical distribution and ecology affect patterns of Wolbachia strain similarity. We used multilocus sequence typing (MLST) to characterize Wolbachia strain similarity among dipteran hosts associated with fleshy mushrooms. Wolbachia Supergroup A was more common than Supergroup B in Diptera, and also more common in mycophagous than non‐mycophagous Diptera. Within Supergroup A, host family within Diptera had no effect on strain similarity, and there was no tendency for Wolbachia strains from sympatric host species to be more similar to one another than to strains from hosts in different biogeographical realms. Supergroup A strains differed between mycophagous and non‐mycophagous Diptera more than expected by chance, suggesting that ecological associations can facilitate horizontal transmission of Wolbachia within mycophagous fly communities. For Supergroup B, there were no significant associations between strain similarity and host phylogeny, biogeography, or ecology. We identified only two cases in which closely related hosts carried closely related Wolbachia strains, evidence that Wolbachia‐host co‐speciation or early introgression can occur but may not be a major contributor to overall strain diversity. Our results suggest that horizontal transmission of Wolbachia can be influenced by host ecology, thus leading to partial restriction of Wolbachia strains or strain groups to particular guilds of insects.  相似文献   

19.
Rhagoletis pomonella (Walsh) and R. mendax (Curran) (Diptera: Tephritidae) are major economic pests of apple and blueberry fruits, respectively, in eastern North America. The taxonomic status of these flies as distinct species has been in dispute because of their close morphological similarity, broadly overlapping geographic distributions and inter-fertility in laboratory crosses. Starch gel electrophoresis of soluble proteins was performed to establish the extent of genetic differentiation and levels of gene flow between blueberry infesting populations of R. mendax and apple and hawthorn infesting populations of R. pomonella. R. mendax and R. pomonella were found to be genetically distinct sibling species as eleven out of total of twenty-nine allozymes surveyed possessed species specific alleles. Data from three sympatric apple and blueberry fly populations in Michigan indicated that these flies do not hybridize in nature and gave no evidence for nuclear gene introgression. Differences in host plant recognition were implicated as important pre-mating barriers to gene flow between R. pomonella and R. mendax; a result supporting a sympatric mode of divergence for these flies.
Résumé R. pomonella Walsh and R. mendax Curran sont respectivement deux mouches très nuisibles aux pommes et aux myrtilles du N E des USA. La position taxonomique de ces mouches comme espèces distinctes a été longtemps mise en doute par suite de leur grande ressemblance morphologique, de l'important chevauchement de leurs répartitions et de leur interfécondité au laboratoire. L'électophorèse sur gel d'amidon de protéines solubles a été utilisé pour établir l'importance de la différenciation génétique et du flux génique entre R. mendax contaminant des myrtilles et R. pomonella contaminant des pommiers et des aubépines. R. mendax et R. pomonella se sont révélées des espèces jumelles car, à l'exception de 11 alolozymes sur 29, chaque espèce possédait des allèles spécifiques. Les données concernant 3 populations sympatriques de mouches des myrtilles et des pommes du Michigan ont montré que des mouches ne s'hybrident pas dans la nature et n'ont fourni aucune indication sur une introgression de gènes nucléaires. Des différences concernant la découverte de hôtes sont impliquées comme obstacles prézygotiques importants au flux génique entre R. pomonella et R. mendax; ce résultat conforte l'hypothèse d'une divergence sympatrique de ces mouches.
  相似文献   

20.
True fruit flies belonging to theRhagoletis pomonella (Walsh) sibling species complex have been proposed to speciate sympatrically by shifting and adapting to new host plants. Here, we report the results from a series of ecological and genetic experiments conducted at a study site near Grant, Michigan, U.S.A., aimed at clarifying the relationship between host specialization and reproductive isolation for these flies. Our findings indicate that apple (Malus pumila) and hawthorn (Crataegus mollis) infesting populations ofR. pomonella are partially allochronically isolated. Differences in the timing of adult eclosion account for part of the allochronic divergence, as apple adults emerge approximately ten days earlier than hawthorn flies in the field. Genetic analyses across different life history stages of the fly show that adults do not randomly move between apple and hawthorn trees, but trend to attack the same species of plant that they infested as larvae. Estimates of interhost migration from the allozyme data suggest that from 2.8 to 10% of the apple population is of hawthorn origin and that over 20% of the hawthorn population is of apple origin. The length and quality of the growing season appear to affect the genetic composition of the host races, as allele frequencies in the hawthorn population are correlated with ambient temperature and rainfall during the spring of the preceding year. Finally, allele frequencies for six allozyme loci displaying host associated differentiation also show significant linear regressions with the timing of adult eclosion within both races. These regressions establish a link between allozyme loci displaying inter-host differentiation and a developmental trait (adult eclosion) responsible for partially isolating the races. The slopes of the regressions are paradoxical, however, as they suggest that apple adults should eclose later, not earlier, than hawthorn flies. We conclude by discussing potential resolutions to the eclosion time paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号