首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work reviews the main advancements achieved in the last decades in the study of the fructose production process by inulin enzymatic hydrolysis. With the aim of collecting and clarifying the majority of the knowledge in this area, the research on this subject has been divided in three main parts: a) the characteristics of inulin (the process reactant); b) the properties of the enzyme inulinase and its hydrolytic action; c) the advances in the study of the applications of inulinases in bioreactors for fructose production. Many vegetable sources of inulin are reported, including information about their yields in terms of inulin. The properties of inulin that appear relevant for the process are also summarized, with reference to their vegetable origin. The characteristics of the inulinase enzyme that catalyzes inulin hydrolysis, together with the most relevant information for a correct process design and implementation, are described in the paper. An extended collection of data on microorganisms capable of producing inulinase is reported. The following characteristics and properties of inulinase are highlighted: molecular weight, mode of action, activity and stability with respect to changes in temperature and pH, kinetic behavior and effect of inhibitors. The paper describes in detail the main aspects of the enzyme hydrolysis reaction; in particular, how enzyme and reactant properties can affect process performance. The properties of inulinase immobilized on various supports are shown and compared to those of the enzyme in its native state. Finally, a number of applications of free and immobilized inulinases and whole cells in bioreactors are reported, showing the different operating procedures and reactor types adopted for fructose production from inulin on a laboratory scale.  相似文献   

2.
ABSTRACT

The present work reviews the main advancements achieved in the last decades in the study of the fructose production process by inulin enzymatic hydrolysis. With the aim of collecting and clarifying the majority of the knowledge in this area, the research on this subject has been divided in three main parts: a) the characteristics of inulin (the process reactant); b) the properties of the enzyme inulinase and its hydrolytic action; c) the advances in the study of the applications of inulinases in bioreactors for fructose production.

Many vegetable sources of inulin are reported, including information about their yields in terms of inulin. The properties of inulin that appear relevant for the process are also summarized, with reference to their vegetable origin.

The characteristics of the inulinase enzyme that catalyzes inulin hydrolysis, together with the most relevant information for a correct process design and implementation, are described in the paper. An extended collection of data on microorganisms capable of producing inulinase is reported. The following characteristics and properties of inulinase are highlighted: molecular weight, mode of action, activity and stability with respect to changes in temperature and pH, kinetic behavior and effect of inhibitors. The paper describes in detail the main aspects of the enzyme hydrolysis reaction; in particular, how enzyme and reactant properties can affect process performance. The properties of inulinase immobilized on various supports are shown and compared to those of the enzyme in its native state.

Finally, a number of applications of free and immobilized inulinases and whole cells in bioreactors are reported, showing the different operating procedures and reactor types adopted for fructose production from inulin on a laboratory scale.  相似文献   

3.
Difructose anhydride III (DFA III), the smallest cyclic disaccharide, consists of two fructose residues. DFA III is a hydrolysate of inulin and is rarely found in nature. Industrial interest in DFA III as a low-calorie sugar substitute is increasing. The present review describes the properties and physiological functions of DFA III as well as its commercial importance. Focus is also given on the biological production of DFA III from inulin, which contains enzyme resources, inulase II properties, and the capacity for mass DFA III production. Inulase II as an industrial enzyme and its molecular evolution are discussed as well. The aim is to better understand commercial-scale DFA III production as a food product.  相似文献   

4.
We found a bacterium that converts sucrose to a useful material, using about 6,000 samples of bacteria isolated from soil. This bacterium, Bacillus sp. 217C-11, was identified according to Bergey's manual, and produced a highly efficient enzyme that converted sucrose into inulin. So, the enzyme was purified to homogeneity through five chromatographic steps, to identify its enzymatic properties. The molecular mass of the enzyme was estimated to be 45,000, and this enzyme was a monomer protein (by SDS-PAGE). The optimum pH and temperature of this enzyme were 7-8 and 45-50 degrees C, respectively. The enzyme reacted only with sucrose, but did not with other disaccharides, fructooligosaccharides and inulin. This paper will show that our enzyme is a novel one, which is different from the other well-known enzymes concerned in inulin production.  相似文献   

5.
Biotechnological potential of inulin for bioprocesses   总被引:2,自引:0,他引:2  
Chi ZM  Zhang T  Cao TS  Liu XY  Cui W  Zhao CH 《Bioresource technology》2011,102(6):4295-4303
Inulin consists of linear chains of β-2,1-linked d-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. In this review article, inulin and its applications in bioprocesses are overviewed. The tubers of many plants, such as Jerusalem artichoke, chicory, dahlia, and yacon contain a large amount of inulin. Inulin can be actively hydrolyzed by microbial inulinases to produce fructose, glucose and inulooligosaccharides (IOS). The fructose and glucose formed can be further transformed into ethanol, single-cell protein, single cell oil and other useful products by different microorganisms. IOS formed have many functions. Therefore, inulin can be widely used in food, feed, pharmaceutical, chemical and biofuels industries.  相似文献   

6.
An inulin fructotransferase (DFA I-producing) [EC 2.4.1.200] from Arthrobacter pascens a62-1 was purified and the properties of the enzyme were investigated. The enzyme was purified from culture supernatant of the microorganism 58.5 fold with a yield of 8.32% using Super Q Toyopearl chromatography and butyl Toyopearl chromatography. It showed maximum activity at pH 5.5 and 45 °C and was stable up to 75 °C. This heat stability was highest in the inulin fructotransferases (DFA I-producing) reported until now. The molecular mass of the enzyme was estimated to be 37,000 by SDS-PAGE and 60,000 by gel filtration, and was considered to be a dimer. The N-terminal amino acid sequence (20 amino acid residues) was determined as Ala-Asn-Thr-Val-Tyr-Asp-Val-Thr-Thr-Trp-Ser-Gly-Ala-Thr-Ile-Ser-Pro-Tyr-Val-Asp.  相似文献   

7.
Inulin-type fructans are the simplest and most studied fructans and have become increasingly popular as prebiotic health-improving compounds. A natural variation in the degree of polymerization (DP) of inulins is observed within the family of the Asteraceae. Globe thistle (Echinops ritro), artichoke (Cynara scolymus), and Viguiera discolor biosynthesize fructans with a considerably higher DP than Cichorium intybus (chicory), Helianthus tuberosus (Jerusalem artichoke), and Dahlia variabilis. The higher DP in some species can be explained by the presence of special fructan:fructan 1-fructosyl transferases (high DP 1-FFTs), different from the classical low DP 1-FFTs. Here, the RT-PCR-based cloning of a high DP 1-FFT cDNA from Echinops ritro is described, starting from peptide sequence information derived from the purified native high DP 1-FFT enzyme. The cDNA was successfully expressed in Pichia pastoris. A comparison is made between the mass fingerprints of the native, heterodimeric enzyme and its recombinant, monomeric counterpart (mass fingerprints and kinetical analysis) showing that they have very similar properties. The recombinant enzyme is a functional 1-FFT lacking invertase and 1-SST activities, but shows a small intrinsic 1-FEH activity. The enzyme is capable of producing a high DP inulin pattern in vitro, similar to the one observed in vivo. Depending on conditions, the enzyme is able to produce fructo-oligosaccharides (FOS) as well. Therefore, the enzyme might be suitable for both FOS and high DP inulin production in bioreactors. Alternatively, introduction of the high DP 1-FFT gene in chicory, a crop widely used for inulin extraction, could lead to an increase in DP which is useful for a number of specific industrial applications. 1-FFT expression analysis correlates well with high DP fructan accumulation in vivo, suggesting that the enzyme is responsible for high DP fructan formation in planta.  相似文献   

8.
Inulin-type fructans are stored in the tuberous roots of the Brazilian cerrado plant Viguiera discolor Baker (Asteraceae). In Cynara scolymus (artichoke) and Echinops ritro (globe thistle), the fructans have a considerably higher degree of polymerization (DP) than in Cichorium intybus (chicory) and Helianthus tuberosus (Jerusalem artichoke). It was shown before that the higher DP in some species can be attributed to the properties of their fructan: fructan 1-fructosyl transferases (1-FFTs; EC 2.4.1.100), enzymes responsible for chain elongation. Here, we describe the cloning of a high DP (hDP) 1-FFT cDNA from V. discolor and its heterologous expression in Pichia pastoris . Starting from 1-kestose and Neosugar P (a mixture of oligo-inulins from microbial origin) as substrates, the recombinant enzyme produces a typical hDP inulin profile in vitro, closely resembling the one observed in vivo. The enzyme shows no invertase activity and sucrose: sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity in vitro. Pattern evolution during incubation suggests that inulins with DP ≥ 6 are much better substrates than sucrose or lower DP oligo-fructans. Because hDP inulin-type fructans show superior properties for specific food and non-food applications, the hDP 1-FFT gene from V. discolor has potential for the production of hDP inulin in vitro or in transgenic crops.  相似文献   

9.
A gene encoding inulin fructotransferase (di-D-fructofuranose 1,2': 2,3' dianhydride [DFA III]-producing IFTase, EC 4.2.2.18) from Bacillus sp. snu-7 was cloned. This gene was composed of a single, 1,353-bp open reading frame encoding a protein composed of a 40-amino acid signal peptide and a 410-amino acid mature protein. The deduced amino acid sequence was 98% identical to Arthrobacter globiformis C11-1 IFTase (DFA III-producing). The enzyme was successfully expressed in E. coli as a functionally active, His-tagged protein, and it was purified in a single step using immobilized metal affinity chromatography. The purified enzyme showed much higher specific activity (1,276units/mg protein) than other DFA III-producing IFTases. The recombinant and native enzymes were optimally active in very similar pH and temperature conditions. With a 103-min half-life at 60 degrees C, the recombinant enzyme was as stable as the native enzyme. Acidic residues and cysteines potentially involved in the catalytic mechanism are proposed based on an alignment with other IFTases and a DFA IIIase.  相似文献   

10.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight−1 at D = 0.1 h−1 to 2 U mg of cell dry weight−1 at D = 0.8 h−1. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.  相似文献   

11.
Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, (13)C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by (13)C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55 degrees C, with a drastic decrease at 60 degrees C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.  相似文献   

12.
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source. This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30. Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity. The optimal hydrolysis temperature for sucrose, raffinose and inulin was 55°C and the optimal pH for sucrose was 4.75. The apparent K m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively. Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides. The results obtained suggest the hypothesis that enzyme production was constitutive. Journal of Industrial Microbiology & Biotechnology (2000) 25, 63–69. Received 17 November 1999/ Accepted in revised form 30 May 2000  相似文献   

13.
A high molecular weight inulin has been prepared from artichoke (Cynara scolymus L.) agroindustrial wastes using environmentally benign aqueous extraction procedures. Physico-chemical analysis of the properties of artichoke inulin was carried out. Its average degree of polymerization was 46, which is higher than for Jerusalem artichoke, chicory, and dahlia inulins. GC-MS confirmed that the main constituent monosaccharide in artichoke inulin was fructose and its degradation by inulinase indicated that it contained the expected beta-2,1-fructan bonds. The FT-IR spectrum was identical to that of chicory inulin. These data indicate that artichoke inulin will be suitable for use in a wide range of food applications. The health-promoting prebiotic effects of artichoke inulin were demonstrated in an extensive microbiological study showing a long lasting bifidogenic effect on Bifidobacterium bifidum ATCC 29521 cultures and also in mixed cultures of colonic bacteria.  相似文献   

14.
《Process Biochemistry》2010,45(3):399-406
Proteases have applications in food, detergent and pharmaceutical industries. A novel protease has been purified from the latex of Calotropis procera and characterized. As another cysteine protease, procerain, is reported from the same source, the newly purified enzyme was named as procerain B. The enzyme shows distinct properties compared to procerain, in terms of cleavage recognition site, immunological properties and other physical properties like molecular weight, isoelectric point, etc. The newly purified enzyme shows a broad optimum pH (6.5–8.5) as well as broad optimum temperature (40–60 °C). Additionally, the enzyme retains its activity where most of other proteases are not active. Moreover, the enzyme appeared to be very efficient in hydrolysis of blood stain and may have potential application in detergent industries. Simple and economic purification of procerain B, together with easy availability of latex, makes the large-scale production of procerain B possible, thus enables to explore various industrial as well as biotechnological applications.  相似文献   

15.
Endo-inulinase is a member of glycosidase hydrolase family 32 (GH32) degrading fructans of the inulin type with an endo-cleavage mode and is an important class of industrial enzyme. In the present study, we report the first crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum at 1.5 Å. It was solved by molecular replacement with the structure of exo-inulinase as search model. The 3D structure presents a bimodular arrangement common to other GH32 enzymes: a N-terminal 5-fold β-propeller catalytic domain with four β-sheets and a C-terminal β-sandwich domain organized in two β-sheets with five β-strands. The structural analysis and comparison with other GH32 enzymes reveal the presence of an extra pocket in the INU2 catalytic site, formed by two loops and the conserved motif W-M(I)-N-D(E)-P-N-G. This cavity would explain the endo-activity of the enzyme, the critical role of Trp40 and particularly the cleavage at the third unit of the inulin(-like) substrates. Crystal structure at 2.1 Å of INU2 complexed with fructosyl molecules, experimental digestion data and molecular modelling studies support these hypotheses.  相似文献   

16.
We successfully synthesized inulin tosylates by treating commercially available inulin with tosyl chloride and triethylamine in N,N-dimethylacetoamide at the ambient temperature for 24h. The subsequent S(N)2 reactions using sodium azide afford inulin azides that can act as useful substrates for the following Huisgen cycloaddition with alkyne-terminated β-lactoside. The resultant inulin derivative having multiple β-lactosides has excellent affinity towards a β-lactoside binding lectin (RCA(120)). This synthetic strategy has various advantages, such as non-fragmentation of the inulin mainchain and wide applications for various alkyne-terminated functional units. Our strategy can be, therefore, used to develop various inulin derivatives that are applicable for food and medicinal industries.  相似文献   

17.
Inulin could be converted to bio-based chemicals by an inulinase producer without external inulinase, and the production of 2,3-butanediol was less than 50 g/L. In this work, a novel inulinase producer of Klebsiella pneumoniae H3 was isolated, and inulinase catalytic properties as well as 2,3-butanediol fermentation were investigated. The enzyme was an intracellular inulinase with an optimal pH of 6 ∼ 7 and a temperature of 30 °C. The use of inulin by H3 was dependent on the degree of polymerization (DP), and the average DP of inulin in fermentation broth increased from 2.82 to 8.08 in 24-h culture of batch fermentation. Acidic pretreatment was developed to increase inulin utilization by adjusting medium pH to 3.0 prior to sterilization. In batch fermentation with optimized medium and fermentation conditions, the concentration of target product (2,3-butanediol and acetoin) was 80.4 g/L with a productivity of 2.23 g/(L⋅h), and a yield of 0.426 g/g inulin.  相似文献   

18.
An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.  相似文献   

19.
Fructosidases, in particular exo-β-fructosidases, may act on fructans such as inulins and levans of plant and bacterial origin to produce fructose. In this paper, the kinetic properties of a commercial preparation (Fructozyme L) and a recombinant exoinulinase (BfrA) from Thermotoga maritima, were studied using fructan polymer substrates from various sources. Both enzymatic preparations preferentially hydrolyzed β2-1 linkages and low molecular weight fructans. We show that chicory inulin is degraded most efficiently by both preparations, followed by bacterial inulin, in spite of its high molecular weight and branching in β2-6 positions. All bacterial levans were more slowly hydrolyzed. Michaelis–Menten kinetics describe the hydrolysis of sucrose and low molecular weight fructans (≤8.3 kDa) by both enzyme preparations, while first order kinetics were observed with respect to bacterial fructans due to the high molecular weight and, therefore, low molar concentrations. Comparison of second order rate constants indicates that bacterial inulin (Leuconostoc citreum CW28) is hydrolyzed more slowly with both enzyme preparations than chicory inulin by approximately one order of magnitude. For Leuconostoc mesenteroides NRRL B-512F levan, the second order rate constant for Fructozyme L is 200-fold lower than for chicory inulin. However, the second order rate constant for BfrA is only 22-fold lower than for chicory inulin. Taken together, our studies characterize the kinetics of fructan hydrolysis and also suggest that the kinetic parameters may be used to differentiate between fructan structures.  相似文献   

20.
Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed in the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve inulin yield and quality in chicory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号