首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parents should bias sex allocation toward offspring of the sex most likely to provide higher fitness returns. Trivers and Willard proposed that for polygynous mammals, females should adjust sex‐ratio at conception or bias allocation of resources toward the most profitable sex, according to their own body condition. However, the possibility that mammalian fathers may influence sex allocation has seldom been considered. Here, we show that the probability of having a son increased from 0.31 to 0.60 with sire reproductive success in wild bighorn sheep (Ovis canadensis). Furthermore, our results suggest that females fertilized by relatively unsuccessful sires allocated more energy during lactation to daughters than to sons, while the opposite occurred for females fertilized by successful sires. The pattern of sex‐biased offspring production appears adaptive because paternal reproductive success reduced the fitness of daughters and increased the average annual weaning success of sons, independently of maternal allocation to the offspring. Our results illustrate that sex allocation can be driven by paternal phenotype, with profound influences on the strength of sexual selection and on conflicts of interest between parents.  相似文献   

2.
Sex allocation theory predicts that parents are selected to bias their progeny sex ratio (SR) toward the sex that will benefit the most from parental quality. Because parental quality may differentially affect survival of sons and daughters, a pivotal test of the adaptive value of SR adjustment is whether parents overproduce offspring of the sex that accrues larger fitness advantages from high parental quality. However, this crucial test of the long‐term fitness consequences of sex allocation decisions has seldom been performed. In this study of the barn swallow (Hirundo rustica), we showed a positive correlation between the proportion of sons and maternal annual survival. We then experimentally demonstrated that this association did not depend on the differential costs of rearing offspring of either sex. Finally, we showed that maternal lifespan positively predicted lifespan of sons but not of daughters. Because in barn swallows lifespan is a strong determinant of lifetime reproductive success, the results suggest that mothers overproduce offspring of the sex that benefits the most from maternal quality. Hence, irrespective of mechanisms causing the SR bias and mother–son covariation in lifespan, we provide strong evidence that sex allocation decisions of mothers can highly impact on their lifetime fitness.  相似文献   

3.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

4.
Adaptive sex allocation has frequently been studied in sexually size dimorphic species, but far less is known about patterns of sex allocation in species without pronounced sexual size dimorphism. Parental optimal investment can be predicted under circumstances in which sons and daughters differ in costs and/or fitness returns. In common terns Sterna hirundo, previous studies suggest that sons are the more costly sex to produce and rear. We investigated whether hatching and fledging sex ratio and sex‐specific chick mortality correlated with the ecological environment (laying date, clutch size, hatching order and year quality) and parental traits (condition, arrival date, experience and breeding success), over seven consecutive years. Population‐wide sex ratios and sex‐specific mortality did not differ from parity, but clutch size, mass of the father, maternal breeding experience and to some extent year quality correlated with hatching sex ratio. The proportion of sons tended to increase in productive years and when the father was heavier, suggesting the possibility that females invest more in sons when the environmental and the partner conditions are good. The proportion of daughters increased with clutch size and maternal breeding experience, suggesting a decline in breeding performance or a resources balance solved by producing more of the cheaper sex. No clear patterns of sex‐specific mortality were found, neither global nor related to parental traits. Our results suggest lines for future studies on adaptive sex allocation in sexually nearly monomorphic species, where adjustment of sex ratio related to parental factors and differential allocation between the offspring may also occur.  相似文献   

5.
Parents should bias resource allocation towards the sex most likely to provide higher fitness returns by adjusting the birth sex ratio and/or through differential care of sons and daughters. Sex allocation research in mammals to date has been focused almost exclusively on maternal traits, but fathers may also play an important role. Future studies should investigate the influence of paternal quality on the fitness of sons and daughters, and possible conflicts of interest between mothers and fathers. There is also a crucial need for more studies examining whether relative levels of maternal care in sons and daughters depend on paternal quality.  相似文献   

6.
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

7.
The relationship between female mating preferences and sex allocation has received considerable theoretical and empirical support. Typically, choosier females adjust their progeny sex ratio towards sons, who inherit the attractive traits of their father. However, in species with paternal genome elimination, where male sperm do not contain the paternal genome, predictions for the direction of progeny sex ratio biases and their relationship with female choosiness are atypical. Paternal genome elimination also creates a potential for male–female conflict over sex allocation, and any influence of female mate choice on sex ratio outcomes have interesting implications for sexually antagonistic coevolution. Within the Sciaridae (Diptera) are species that produce single‐sex progeny (monogenic species) and others in which progeny comprise both sexes (digenic species). Paternal genome elimination occurs in both species. We explore female mate resistance behaviour in a monogenic and digenic species of mushroom gnat from the genus Bradysia. Our experiments confirmed our theoretical predictions, revealing that in the monogenic and digenic species, females producing female‐biased progeny were more likely to have resisted at least one mating attempt.  相似文献   

8.
Sex allocation theory predicts females will adaptively manipulate sex ratios to maximize their progeny's reproductive value. Recently, the generality of biased sex allocation in birds has been questioned by meta-analytic reviews, which demonstrate that many previously reported significant results may simply reflect sampling error. Here, we utilize a robust sample size and powerful statistical approach to determine whether parental quality is correlated with biased sex allocation in red-capped robins. Indices of maternal quality (including interactive effects of age and condition) were strongly related to sex allocation. These relationships were in the predicted directions, with larger effect sizes than those of previous studies in this field. There were also paternal correlates, involving age and the source of paternity. We propose that biased sex allocation occurs in this species, and is maintained by differing production costs of each sex and genetic benefits to females of producing sons when fertilized by high-quality males.  相似文献   

9.
Intralocus sexual conflict arises when selection favours alternative fitness optima in males and females. Unresolved conflict can create negative between‐sex genetic correlations for fitness, such that high‐fitness parents produce high‐fitness progeny of their same sex, but low‐fitness progeny of the opposite sex. This cost of sexual conflict could be mitigated if high‐fitness parents bias sex allocation to produce more offspring of their same sex. Previous studies of the brown anole lizard (Anolis sagrei) show that viability selection on body size is sexually antagonistic, favouring large males and smaller females. However, sexual conflict over body size may be partially mitigated by adaptive sex allocation: large males sire more sons than daughters, whereas small males sire more daughters than sons. We explored the evolutionary implications of these phenomena by assessing the additive genetic (co)variance of fitness within and between sexes in a wild population. We measured two components of fitness: viability of adults over the breeding season, and the number of their progeny that survived to sexual maturity, which includes components of parental reproductive success and offspring viability (RSV). Viability of parents was not correlated with adult viability of their sons or daughters. RSV was positively correlated between sires and their offspring, but not between dams and their offspring. Neither component of fitness was significantly heritable, and neither exhibited negative between‐sex genetic correlations that would indicate unresolved sexual conflict. Rather, our results are more consistent with predictions regarding adaptive sex allocation in that, as the number of sons produced by a sire increased, the adult viability of his male progeny increased.  相似文献   

10.
In polygynous, sexual dimorphic species with higher variance in male reproductive success compared with females, females are expected to invest more heavily in sons than daughters within the constraints imposed by their physical condition (Science 1973; 179:90). Mothers in good condition, usually those of high rank, should produce more sons than females in poor condition or of low rank. We investigated sex allocation and sex‐biased maternal investment in a population of wild Hanuman langurs using rank and group size as approximations of female physical condition. Our results show that reproductive costs of sons were higher with both significantly longer interbirth intervals following male births and longer lactational periods for sons. Not in all groups did analyses of rank‐dependent sex allocation reveal the expected pattern of high‐ranking mothers producing more sons. However, sex ratio was significantly influenced by group size, with females from larger groups, i.e., in worse physical condition, producing a daughter‐biased sex ratio. In fact, only females of population‐wide superior physical condition can be expected to produce sons, because in Hanuman langurs males disperse and compete population‐wide. Thus, our results support the Trivers–Willard model and may explain the mixed evidence accruing from studies of single groups. We present a graphical model of how group size and dominance‐related differences in energy gain may influence sex allocation under different competitive regimes relative to overall resource availability. Tests of adaptive sex allocation models should consider whether reproductive competition of the preferred sex takes place primarily within a group or within the population.  相似文献   

11.
Sex allocation theory predicts that if benefits of producing sons and daughters differ and outweigh the costs of sex ratio adjustment, parents should produce more of the offspring that provide them with greater fitness. Potential benefits may be more likely to outweigh costs where sexual size dimorphism and, in birds, single‐egg clutches exist. Great frigatebirds Fregataminor are seabirds in which females are larger than males and clutch size is one egg. In our study population, sexual size dimorphism develops primarily during the period of complete juvenile dependence on parental care, consistent with a higher cost of producing daughters than sons. Over the course of the 1998 breeding season there was a shift from early season prevalence of daughters to late‐season prevalence of sons. Variation in food availability at time of egg laying, as indexed by sea surface temperature (SST), was a strong predictor of offspring sex in 1998. In contrast, SST in 2003 was not a predictor of offspring sex, nor was there a seasonal shift in the hatching sex ratio, despite a seasonal shift in SST. Besides food availability, we tested two additional factors in 2003 that could explain sex ratio adjustment in relation to the cost of reproduction. Offspring sex in 2003 was not related to natural or experimentally induced variation in maternal body condition; pre‐laying food supplements raised the body condition of females at the time of egg laying but did not affect offspring sex or egg mass. In addition, offspring sex was not predicted by the length of maternal telomere restriction fragments (TRFs), an index of age and possibly of reproductive experience. Broad confidence intervals on effect size suggest that undetected effects of maternal condition on offspring sex ratio could easily exist, but confidence intervals were narrower on the non‐significant effects of SST and TRF length on offspring sex ratio. The cause of different seasonal patterns of hatching sex ratio and different SST effects in 1998 and 2003 is unclear.  相似文献   

12.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

13.
For the management of captive populations of zoo animals, it is important to elucidate factors that affect the offspring birth sex ratio. On the basis of the sex allocation theory, the Trivers–Willard and mate attractive/quality hypotheses predict that maternal and paternal conditions affect offspring birth sex ratios. We examined these predictions for the birth sex ratio of aye‐aye Daubentonia madagascariensis (Gmelin) by analyzing the pedigree information in the International Studbook. We found that the birth sex ratio of the aye‐aye was affected by the paternal age, but not maternal age and other environmental factors (birth year, season, and institution). The younger the sire, the more the offspring sex ratio was biased toward males. These results are useful for the effective population management of captive aye‐aye and illustrated the usefulness of the sex allocation theory in the sex ratio management of zoo animals.  相似文献   

14.
Despite extensive research on mechanisms generating biases in sex ratios, the capacity of natural enemies to shift or further skew operational sex ratios following sex allocation and parental care remains largely unstudied in natural populations. Male cocoons of the sawfly Neodiprion abietis (Hymenoptera: Diprionidae) are consistently smaller than those of females, with very little overlap, and thus, we were able to use cocoon size to sex cocoons. We studied three consecutive cohorts of N. abietis in six forest stands to detect cocoon volume‐associated biases in the attack of predators, pathogens, and parasitoids and examine how the combined effect of natural enemies shapes the realized operational sex ratio. Neodiprion abietis mortality during the cocoon stage was sex‐biased, being 1.6 times greater for males than females. Greater net mortality in males occurred because male‐biased mortality caused by a pteromalid parasitic wasp and a baculovirus was greater and more skewed than female‐biased mortality caused by ichneumonid parasitic wasps. Variation in the susceptibility of each sex to each family of parasitoids was associated with differences in size and life histories of male and female hosts. A simulation based on the data indicated that shifts in the nature of differential mortality have different effects on the sex ratio and fitness of survivors. Because previous work has indicated that reduced host plant foliage quality induces female‐biased mortality in this species, bottom‐up and top‐down factors acting on populations can affect operational sex ratios in similar or opposite ways. Shifts in ecological conditions therefore have the potential to alter progeny fitness and produce extreme sex ratio skews, even in the absence of unbalanced sex allocation. This would limit the capacity of females to anticipate the operational sex ratio and reliably predict the reproductive success of each gender at sex allocation.  相似文献   

15.
In the twig‐nesting carpenter bee, Ceratina calcarata, body size is an important component of maternal quality, smaller mothers producing significantly fewer and smaller offspring than larger mothers. As mothers precisely control the sex and size of each offspring, smaller mothers might compensate by preferentially allocating their investment towards sons. We investigated whether variation in maternal quality leads to variation in sex allocation patterns. At the population level, the numerical sex ratio was 57% male‐biased (1.31 M/F), but the investment between the sexes was balanced (1.02 M/F), because females are 38% larger than males (1.28 F/M). Maternal body size explained both sex allocation pattern and size variation among offspring: larger mothers invested more in individual progeny and produced more female offspring than smaller mothers. Maternal investment in offspring of both sexes decreased throughout the season, probably as a result of increasing maternal wear and age. The exception to this pattern was the curious production of dwarf females in the first two brood cell positions. We suggest that the sex ratio distribution reflects the maternal body size distribution and a constraint on small mothers to produce small broods. This leads to male‐biased allocation by small females, to which large mothers respond by biasing their allocation towards daughters.  相似文献   

16.
Sex allocation theory assumes individual plasticity in maternal strategies, but few studies have investigated within‐individual changes across environments. In house wrens, differences between nests in the degree of hatching synchrony of eggs represent a behavioural polyphenism in females, and its expression varies with seasonal changes in the environment. Between‐nest differences in hatching asynchrony also create different environments for offspring, and sons are more strongly affected than daughters by sibling competition when hatching occurs asynchronously over several days. Here, we examined variation in hatching asynchrony and sex allocation, and its consequences for offspring fitness. The number and condition of fledglings declined seasonally, and the frequency of asynchronous hatching increased. In broods hatched asynchronously, sons, which are over‐represented in the earlier‐laid eggs, were in better condition than daughters, which are over‐represented in the later‐laid eggs. Nonetheless, asynchronous broods were more productive later within seasons. The proportion of sons in asynchronous broods increased seasonally, whereas there was a seasonal increase in the production of daughters by mothers hatching their eggs synchronously, which was characterized by within‐female changes in offspring sex and not by sex‐biased mortality. As adults, sons from asynchronous broods were in better condition and produced more broods of their own than males from synchronous broods, and both males and females from asynchronous broods had higher lifetime reproductive success than those from synchronous broods. In conclusion, hatching patterns are under maternal control, representing distinct strategies for allocating offspring within broods, and are associated with offspring sex ratios and differences in offspring reproductive success.  相似文献   

17.
Theory predicts that mothers should adjust offspring sex ratios when the expected fitness gains or rearing costs differ between sons and daughters. Recent empirical work has linked biased offspring sex ratios to environmental quality via changes in relative maternal condition. It is unclear, however, whether females can manipulate offspring sex ratios in response to environmental quality alone (i.e. independent of maternal condition). We used a balanced within-female experimental design (i.e. females bred on both low- and high-quality diets) to show that female parrot finches (Erythrura trichroa) manipulate primary offspring sex ratios to the quality of the rearing environment, and not to their own body condition and health. Individual females produced an unbiased sex ratio on high-quality diets, but over-produced sons in poor dietary conditions, even though they maintained similar condition between diet treatments. Despite the lack of sexual size dimorphism, such sex ratio adjustment is in line with predictions from sex allocation theory because nutritionally stressed foster sons were healthier, grew faster and were more likely to survive than daughters. These findings suggest that mothers may adaptively adjust offspring sex ratios to optimally match their offspring to the expected quality of the rearing environment.  相似文献   

18.
Sex allocation theory predicts that females should produce more sons when the reproductive success of sons is expected to be high, whereas they should produce more daughters, not daughters when the reproductive success of sons is expected to be low. The guppy (Poecilia reticulata) is a live‐bearing fish, and female guppies are known to produce broods with biased sex ratios. In this study, we examined the relationship between brood sex ratio and reproductive success of sons and daughters, to determine whether female guppies benefit from producing broods with biased sex ratios. We found that sons in male‐biased broods had greater mating success at maturity than sons in female‐biased broods when brood sizes were larger. On the other hand, the reproductive output of daughters was not significantly affected by brood sizes and sex ratios. Our results suggest that female guppies benefit from producing large, male‐biased brood when the reproductive success of sons is expected to be high.  相似文献   

19.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

20.
If parental allocation to each offspring sex has the same cost/benefit ratio, Fisher's hypothesis predicts a sex ratio biased towards the cheaper sex. However, in dimorphic birds there is little evidence for this, especially at hatching. We investigated the pre‐fledgling 1) sex ratio, 2) body condition and 3) sex‐differential mortality in a population of the glossy ibis Plegadis falcinellus, in southern Spain between 2001 and 2011. We defined two age groups for the period between hatching and fledging. We also compared pre‐fledgling with the autumn sex ratio. Metabolic rates were estimated by the doubly labeled water (DLW) technique to establish that sons (the bigger sex) were 18% more energy demanding than daughters, and to compute the predicted Fisher's sex ratio (0.465). As population size increased between years, body condition decreased in both sexes, and mortality increased more for daughters than sons prior to fledging. At the same time, the proportion of males among chicks close to fledging increased (average sex ratio: 0.606) while the proportion close to hatching decreased (average sex ratio: 0.434, in line with Fisher's prediction). Furthermore, the proportions of males at fledging and the following autumn were negatively correlated across years. We suggest that, as population density increased and conditions worsened the larger sex had relatively higher survival. These differences in survival produce a shift from a facultative female‐biased sex ratio at hatching into a non‐facultative male‐biased sex ratio of fledglings. Additionally, the excess of males at fledging was counterbalanced by sex‐related dispersal during the autumn. Overall, glossy ibis sex ratio is a product of a combination of facultative and non‐facultative adjustments triggered by environmental conditions, driven by rapid population growth, and mediated by highly interrelated life‐history traits such as body condition, mortality, and dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号