首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The statistical relationships among the glycolytic intermediates (GI)) of the Embden-Meyerhof pathway, adenine nucleotides (ANs) and various hematological measures were estimated for 34 sickle cell anemia patients. Heterogeneity in linear and quadratic regressions of hemoglobin and hematocrit, both singly and jointly, on the GI and AN variables implied 1) that any single formula to standardize optical density measures of the GIs and ANs on a per gram hemoglobin or per liter cell water basis would not uniformly remove hemoglobin and hematocrit effects: 2) that ignoring significant hematological effects could bias the estimates of correlation among GIs and ANs; and 3) that hemoglobin and hematocrit measures do not reflect the same source of variability. The correlations among the GIs and ANs, after adjustment for hematological variability, were analyzed by path analysis to determine which of five proposed path models for cause and effect relationships were compatible with the data. AMP had a greater influence on ADP (coefficient of determination (CD) = 23%) than all the GIs together, while G6P and ADP influenced ATP variability the most (CD = 33% and 12%). The contributions of unknown factors to ADP and ATP variability were large for all models (CD = 56--77%) possibly due to stress of sickle cell disease. The path model with AMP and the four GIs (G6P, F6P, FDP, DHAP) influencing ADP variation, and the same GIs and ADP influencing ATP was the model most compatible with the data.  相似文献   

4.
5.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   

6.
Each of the twelve enzymes for glycolytic fermentation, eleven from Escherichia coli and one from Saccharomyces cerevisiae, have been over-expressed in E. coli and purified with His-tags. Simple assays have been developed for each enzyme and they have been assembled for fermentation of glucose to ethanol. Phosphorus-31 NMR revealed that this in vitro reaction accumulates fructose 1,6-bisphosphate while recycling the cofactors NAD+ and ATP. This reaction represents a defined ATP-regeneration system that can be tailored to suit in vitro biochemical reactions such as cell-free protein synthesis. The enzyme from S. cerevisiae, pyruvate decarboxylase 1 (Pdc1; EC 4.1.1.1), was identified as one of the major ‘flux controlling’ enzymes for the reaction and was replaced with an evolved version of Pdc1 that has over 20-fold greater activity under glycolysis reaction conditions. This substitution was only beneficial when the ratio of glycolytic enzymes was adjusted to suit greater Pdc1 activity.  相似文献   

7.
Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis of dynamic isotope labeling measurements and have applied it to determine metabolic pathway fluxes in the cyanobacterium Synechocystis sp. PCC6803. Comparison to a theoretically predicted flux map revealed inefficiencies in photosynthesis due to oxidative pentose phosphate pathway and malic enzyme activity, despite negligible photorespiration. This approach has potential to fill important gaps in our understanding of how carbon and energy flows are systemically regulated in cyanobacteria, plants, and algae.  相似文献   

8.
Since the 1970s, with Heinrich as a pioneer in the field, numerous kinetic models of erythrocyte glycolysis have been constructed. A functional comparison of eight of these models indicates that the production of ATP and GSH in the red blood cell is largely controlled by the demand reactions. The rate characteristics for the supply and demand blocks indicate a good homeostatic control of ATP and GSH concentrations at different work loads for the pathway, while the production rates of ATP and GSH can be adjusted as needed by the demand reactions.  相似文献   

9.
The aim of this work was to evaluate the influence of chronic exposure to lead ions on the parameters of energetic status of human erythrocytes in vitro. Umbilical cord erythrocytes were incubated with lead acetate at final lead ion concentrations ranging from 10 to 200 microg/dl. ATP, ADP, AMP, adenosine, GTP, GDP, GMP, guanosine, IMP, inosine, hypoxanthine, NAD and NADP concentrations in erythrocytes were determined using HPLC. Scanning electron micrographs of erythrocytes were taken. The mean concentrations of ATP, GTP, NAD and NADP, and mean values of adenylate energy charge (AEC) and GEC in cells incubated at the presence of lead ions were significantly lower after 20 h of incubation. Concentrations of purine degradation products (Ado, Guo, Ino) and Hyp were significantly higher. It is suggested that lead ions affect the energy metabolism of erythrocytes. Morphological changes in erythrocytes correspond to the increase of lead ions in the incubation mixture and to the decrease of ATP concentration in erythrocytes. A decrease in NAD and ATP concentration in erythrocytes could be a sensitive indicator of energy process disturbance, useful in monitoring in case of chronic lead exposure.  相似文献   

10.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   

11.
Recent advances in the field of brain energy metabolism strongly suggest that glutamate receptor-mediated neurotransmission is coupled with molecular signals that switch-on glucose utilization pathways to meet the high energetic requirements of neurons. Failure to adequately coordinate energy supply for neurotransmission ultimately results in a positive amplifying loop of receptor over-activation leading to neuronal death, a process known as excitotoxicity. In this review, we revisited current concepts in excitotoxic mechanisms, their involvement in energy substrate utilization, and the signaling pathways that coordinate both processes. In particular, we have focused on the novel role played by the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1, in cell metabolism. Our laboratory identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) –a key glycolytic-promoting enzyme– as an APC/C-Cdh1 substrate. Interestingly, APC/C-Cdh1 activity is inhibited by over-activation of glutamate receptors through a Ca2+-mediated mechanism. Furthermore, by inhibiting APC/C-Cdh1 activity, glutamate-receptors activation promotes PFKFB3 stabilization, leading to increased glycolysis and decreased pentose-phosphate pathway activity. This causes a loss in neuronal ability to regenerate glutathione, triggering oxidative stress and delayed excitotoxicity. Further investigation is critical to identify novel molecules responsible for the coupling of energy metabolism with glutamatergic neurotransmission and excitotoxicity, as well as to help developing new therapeutic strategies against neurodegeneration.  相似文献   

12.
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (PN) and stomatal conductance (gs). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.  相似文献   

13.
Systems biology of the metabolic network regulated by the Akt pathway   总被引:1,自引:0,他引:1  
Cancer has been proposed as an example of systems biology disease or network disease. Accordingly, tumor cells differ from their normal counterparts more in terms of intracellular network dynamics than single markers. Here we shall focus on a recently recognized hallmark of cancer, the deregulation of cellular energetics. The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been confirmed as an essential step toward cell transformation. We will consider how the effects of Akt activation are connected with cell metabolism; more precisely, we will review existing metabolic models and discuss the current knowledge available to construct a kinetic model of the most relevant metabolic processes regulated by the PI3K/Akt pathway. The model will enable a systems biology approach to predict the metabolic targets that may inhibit cell growth under hyper activation of Akt.  相似文献   

14.
During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.  相似文献   

15.
While the widespread reliance on fossil fuels is driven by their low cost and relative abundance, this fossil-based economy has been deemed unsustainable and, therefore, the adoption of sustainable and environmentally compatible energy sources is on the horizon. Biorefinery is an emerging approach that integrates metabolic engineering, synthetic biology, and systems biology principles for the development of whole-cell catalytic platforms for biomanufacturing. Due to the high degree of reduction and low cost, glycerol, either refined or crude, has been recognized as an ideal feedstock for the production of value-added biologicals, though microbial dissimilation of glycerol sometimes can be difficult particularly under anaerobic conditions. While strain development for glycerol biorefinery is widely reported in the literature, few, if any, commercialized bioprocesses have been developed as a result, such that engineering of glycerol metabolism in microbial hosts remains an untapped opportunity in biomanufacturing. Here we review the recent progress made in engineering microbial hosts for the production of biofuels, diols, organic acids, biopolymers, and specialty chemicals from glycerol. We begin with a broad outline of the major pathways for fermentative and respiratory glycerol dissimilation and key end metabolites, and then focus our analysis on four key genera of bacteria known to naturally dissimilate glycerol, i.e. Klebsiella, Citrobacter, Clostridium, and Lactobacillus, in addition to Escherichia coli, and systematically review the progress made toward engineering these microorganisms for glycerol biorefinery. We also identify the major biotechnological and bioprocessing advantages and disadvantages of each genus, and bottlenecks limiting the production of target metabolites from glycerol in engineered strains. Our analysis culminates in the development of potential strategies to overcome the current technical limitations identified for commonly employed strains, with an outlook on the suitability of different hosts for the production of key metabolites and avenues for their future development into biomanufacturing platforms.  相似文献   

16.
17.
Wang Z  Chen T  Ma X  Shen Z  Zhao X 《Bioresource technology》2011,102(4):3934-3940
Zwf (code for glucose-6-phosphate dehydrogenase) and gnd (code for 6-phosphogluconate dehydrogenase) genes from Corynebacterium glutamicum were firstly cloned, and then site-directed mutagenesis was successfully introduced to remove allosteric inhibition by intracellular metabolites. Expression of the mutant zwf and gnd in Bacillus subtilis RH33 resulted in significant enhancement of riboflavin productivity, while the specific growth rate decreased slightly and the specific glucose uptake rate was unchanged. Introduction of the mutant zwf and gnd led to approximately 18% and 22% increased riboflavin production, respectively. An improvement by 31% and 39% of the riboflavin production was obtained by co-expression of the mutated dehydrogenases in shaker flask and fed-batch cultivation. Intracellular metabolites analysis indicated that metabolites detected in pentose phosphate pathway or riboflavin synthesis pathway of engineered strains showed higher concentration, while TCA cycle and glycolysis metabolites detected were lower abundance than that of parent strain.  相似文献   

18.
Veena Prabhakar 《FEBS letters》2009,583(6):983-991
The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of leaves. Two T-DNA insertion eno1 mutants exhibited distorted trichomes and reduced numbers of root hairs as the only visible phenotype. The essential role of ENO1 in PEP provision for anabolic processes within plastids, such as the shikimate pathway, is discussed with respect to plastid transporters, such as the PEP/phosphate translocator.  相似文献   

19.
Chronic alcohol exposure can adversely affect neuronal morphology, synaptic architecture and associated neuroplasticity. However, the effects of moderate levels of long-term alcohol intake on the brain are a matter of debate. The current study used 2-DE (two-dimensional gel electrophoresis) proteomics to examine proteomic changes in the striatum of male Wistar rats after 8 months of continuous access to a standard off-the-shelf beer in their home cages. Alcohol intake under group-housed conditions during this time was around 3–4 g/kg/day, a level below that known to induce physical dependence in rats. After 8 months of access rats were euthanased and 2-DE proteomic analysis of the striatum was conducted. A total of 28 striatal proteins were significantly altered in the beer drinking rats relative to controls. Strikingly, many of these were dopamine (DA)-related proteins, including tyrosine hydroxylase (an enzyme of DA biosynthesis), pyridoxal phosphate phosphatase (a co-enzyme in DA biosynthesis), DA and cAMP regulating phosphoprotein (a regulator of DA receptors and transporters), protein phosphatase 1 (a signaling protein) and nitric oxide synthase (which modulates DA uptake). Selected protein expression changes were verified using Western blotting. We conclude that long-term moderate alcohol consumption is associated with substantial alterations in the rat striatal proteome, particularly with regard to dopaminergic signaling pathways. This provides potentially important evidence of major neuroadaptations in dopamine systems with daily alcohol consumption at relatively modest levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号