首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral proteins are known to be methylated by host protein arginine methyltransferases (PRMTs) necessary for the viral life cycle, but it remains unknown whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins are methylated. Herein, we show that PRMT1 methylates SARS-CoV-2 nucleocapsid (N) protein at residues R95 and R177 within RGG/RG motifs, preferred PRMT target sequences. We confirmed arginine methylation of N protein by immunoblotting viral proteins extracted from SARS-CoV-2 virions isolated from cell culture. Type I PRMT inhibitor (MS023) or substitution of R95 or R177 with lysine inhibited interaction of N protein with the 5’-UTR of SARS-CoV-2 genomic RNA, a property required for viral packaging. We also defined the N protein interactome in HEK293 cells, which identified PRMT1 and many of its RGG/RG substrates, including the known interacting protein G3BP1 as well as other components of stress granules (SGs), which are part of the host antiviral response. Methylation of R95 regulated the ability of N protein to suppress the formation of SGs, as R95K substitution or MS023 treatment blocked N-mediated suppression of SGs. Also, the coexpression of methylarginine reader Tudor domain-containing protein 3 quenched N protein–mediated suppression of SGs in a dose-dependent manner. Finally, pretreatment of VeroE6 cells with MS023 significantly reduced SARS-CoV-2 replication. Because type I PRMT inhibitors are already undergoing clinical trials for cancer treatment, inhibiting arginine methylation to target the later stages of the viral life cycle such as viral genome packaging and assembly of virions may represent an additional therapeutic application of these drugs.  相似文献   

2.
3.
Neuronal apoptosis is considered to play a significant role in several neuropathological conditions. However, the molecular mechanisms underlying neuronal apoptosis are poorly understood. Insulin-like growth factor (IGF) signalling is considered to be an important regulator of neuronal differentiation, survival and apoptosis. We have examined the expression of two members of the IGF system, insulin-like growth factor binding protein 5 (IGFBP-5) and the type-1 IGF receptor (IGF1R), during apoptosis of rat cerebellar granule cells (CGCs) in vitro. We describe a prominent downregulation of IGFBP-5 mRNA and protein expression. We also show that IGF-I increases IGFBP-5 expression in CGCs and that the downregulation of IGFBP-5 mRNA can be suppressed by inhibiting mRNA synthesis with actinomycin D. The expression of IGF1R mRNA showed a transient upregulation during potassium chloride (KCl) deprivation induced apoptosis, in contrast to the IGF1R protein level, which was downregulated during KCl deprivation. Our results provide insight into the expression of IGF-related genes during neuronal apoptosis, and indicate that they mediate a protective response to the withdrawal of trophic stimulation. It seems that the expression of IGFBP-5 and IGF1R is regulated to maximize the availability of IGF and the activity of IGF-triggered survival signalling.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The RNA binding protein Larp1 was originally shown to be involved in spermatogenesis, embryogenesis and cell-cycle progression in Drosophila. Our data show that mammalian Larp1 is found in a complex with poly A binding protein and eukaryote initiation factor 4E and is associated with 60S and 80S ribosomal subunits. A reduction in Larp1 expression by siRNA inhibits global protein synthesis rates and results in mitotic arrest and delayed cell migration. Consistent with these data we show that Larp1 protein is present at the leading edge of migrating cells and interacts directly with cytoskeletal components. Taken together, these data suggest a role for Larp1 in facilitating the synthesis of proteins required for cellular remodelling and migration.  相似文献   

11.
12.
Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.  相似文献   

13.
14.
Objectives: Notch1 regulates tumor biology in a complex, context-dependent manner. The roles of Notch1 in tongue cancer are still controversial. The aim of this study is to investigate the roles of Notch1 in tongue cancer.

Materials and Methods: The expression of Notch1 was tested between tongue cancer and normal samples by using immunohistochemistry. Tongue cancer cells were transfected with siRNA or plasmid, respectively. Cell proliferation, apoptosis, migration and invasion ability were tested in appropriate ways. The subcutaneous tumor model was established to observe the tumor growth.

Results: Notch1 was upregulated in tongue carcinoma tissues and the expression of Notch1 was related with tumor stage and differentiation. Overexpression of Notch1 could increase tongue cancer cells proliferation, invasion and migration. But inhibited the expression of Notch1 could decrease cells proliferation, invasion and migration and promote cell apoptosis in vitro and in vivo.

Conclusion: Our results prove that the oncogenic role of Notch1 in tongue cancer and provide the direction of targeted therapy of tongue cancer.  相似文献   


15.
16.
The detrimental effects of spaceflight and simulated microgravity on the immune system have been extensively documented. We report here microarray gene expression analysis, in concert with quantitative RT‐PCR, in young adult C57BL/6NTac mice at 8 weeks of age after exposure to spaceflight aboard the space shuttle (STS‐118) for a period of 13 days. Upon conclusion of the mission, thymus lobes were extracted from space flown mice (FLT) as well as age‐ and sex‐matched ground control mice similarly housed in animal enclosure modules (AEM). mRNA was extracted and an automated array analysis for gene expression was performed. Examination of the microarray data revealed 970 individual probes that had a 1.5‐fold or greater change. When these data were averaged (n = 4), we identified 12 genes that were significantly up‐ or down‐regulated by at least 1.5‐fold after spaceflight (P ≤ 0.05). The genes that significantly differed from the AEM controls and that were also confirmed via QRT‐PCR were as follows: Rbm3 (up‐regulated) and Hsph110, Hsp90aa1, Cxcl10, Stip1, Fkbp4 (down‐regulated). QRT‐PCR confirmed the microarray results and demonstrated additional gene expression alteration in other T cell related genes, including: Ctla‐4, IFN‐α2a (up‐regulated) and CD44 (down‐regulated). Together, these data demonstrate that spaceflight induces significant changes in the thymic mRNA expression of genes that regulate stress, glucocorticoid receptor metabolism, and T cell signaling activity. These data explain, in part, the reported systemic compromise of the immune system after exposure to the microgravity of space. J. Cell. Biochem. 110: 372–381, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Metallothioneins are small cysteine-rich proteins with strong binding capacity for heavy metals. In animals and fungi they are involved in cellular detoxification processes. Although genes for similar proteins exist in plants, less is known about the putative functions of their protein products. Here, we describe the characterisation of cDNAs specific for four genes (LEMT1, LEMT2, LEMT3 and LEMT4) encoding metallothionein-like proteins from tomato. Based on the characteristic cysteine pattern, the LEMT1, LEMT3 and LEMT4 gene products represent type 2 proteins. In contrast, the LEMT2 protein might establish a new structural pattern of metallothionein-like proteins not described before. Mapping experiments demonstrate that all four genes are localised at different genetic loci within the tomato genome. The members of the small gene family show a differential organ specific expression pattern. Expression of these genes is also influenced by heavy metals and by treatment with the thiol-oxidising drug diamide. We further describe the expression of the LEMT genes under different iron supply conditions both in tomato wild type as well as in the mutant chloronerva, which is defective in metal uptake regulation and exhibits a characteristic apparent iron deficiency syndrome.  相似文献   

18.
19.
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号