首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

5.
The onset of human labour resembles inflammation with increased synthesis of prostaglandins and cytokines. There is evidence from rodent models for an important role for nuclear factor‐κB (NF‐κB) activity in myometrium which both up‐regulates contraction‐associated proteins and antagonizes the relaxatory effects of progesterone. Here we show that in the human, although there are no differences in expression of NF‐κB p65, or IκB‐α between upper‐ or lower‐segment myometrium or before or after labour, there is nuclear localization of serine‐256‐phospho‐p65 and serine‐536‐phospho‐p65 in both upper‐ and lower‐segment myometrium both before and after the onset of labour at term. This shows that NF‐κB is active in both upper and lower segment prior to the onset of labour at term. To identify the range of genes regulated by NF‐κB we overexpressed p65 in myocytes in culture. This led to NF‐κB activation identical to that seen following interleukin (IL)‐1β stimulation, including phosphorylation and nuclear translocation of p65 and p50. cDNA microarray analysis showed that NF‐κB increased expression of 38 genes principally related to immunity and inflammation. IL‐1β stimulation also resulted in an increase in the expression of the same genes. Transfection with siRNA against p65 abolished the response to IL‐1β proving a central role for NF‐κB. We conclude that NF‐κB is active in myocytes in both the upper and lower segment of the uterus prior to the onset of labour at term and principally regulates a group of immune/inflammation associated genes, demonstrating that myocytes can act as immune as well as contractile cells.  相似文献   

6.
7.
Hyperglycemia impairs glucagon‐like peptide‐1 receptor (GLP‐1R) signaling in multiple cell types and thereby potentially attenuates the therapeutic effects of GLP‐1R agonists. We hypothesized that the downregulation of GLP‐1R by hyperglycemia might reduce the renal‐protective effects of GLP‐1R agonists in diabetic nephropathy (DN). In this study, we examined the effects of high glucose on the expression of GLP‐1R and its signaling pathways in the HBZY‐1 rat mesangial cell line. We found that high glucose reduced GLP‐1R messenger RNA (mRNA) levels in HBZY‐1 cells and in the renal cortex in db/db mice comparing with control groups. In consistence, GLP‐1R agonist exendin‐4 induced CREB phosphorylation was attenuated by high glucose but not low glucose treatment, which is paralleled with abrogated anti‐inflammatory functions in HBZY‐1 cells linked with nuclear factor‐κB (NF‐κB) activation. In consistence, GLP‐1R inhibition aggravated the high glucose‐induced activation of NF‐κB and MCP‐1 protein levels in cultured HBZY‐1 cells while overexpression of GLP‐1R opposite effects. We further proved that metformin restored high glucose‐inhibited GLP‐1R mRNA expression and decreased high glucose evoked inflammation in HBZY‐1 cells. On the basis of these findings, we conclude that high glucose lowers GLP‐1R expression and leads to inflammatory responses in mesangial cells, which can be reversed by metformin. These data support the rationale of combinative therapy of metformin with GLP‐1R agonists in DN.  相似文献   

8.
We previously reported that mechanical vibration‐induced proinflammatory cytokines, interleukin‐6 (IL‐6) and IL‐8, expression in human periodontal ligament (hPDL) cells, however, the underlying mechanism remained unclear. Mechanical stimuli are able to activate cellular responses by inducing the activation of several signaling pathways including cytoskeletal changes and inflammation. The actin cytoskeleton is a highly dynamic network and plays many important roles in intracellular events. Here, we aimed to investigate the involvement of a pivotal mediator of inflammatory responses, nuclear factor‐κB (NF‐κB), and actin polymerization in vibration‐induced upregulation of IL‐6 and IL‐8 expression in hPDL cells. hPDL cells were pretreated with the NF‐κB inhibitor BAY 11‐7082 or cytochalasin D, respectively, before exposure to vibration. IL‐6 and IL‐8 messenger RNA (mRNA) and protein expression were quantified by quantitative polymerase chain reaction and enzyme‐linked immunosorbent assays, respectively. Subcellular localization of the NF‐κB p65 subunit was visualized by immunofluorescent staining. We found an increase in NF‐κB nuclear translocation in vibrated cells compared with control cells. Pretreatment with BAY 11‐7082 significantly inhibited vibration‐induced IL‐6 and IL‐8 mRNA and protein expression in hPDL cells. Moreover, pretreatment with cytochalasin D inhibited NF‐κB nuclear translocation and attenuated upregulation of IL‐6 and IL‐8 mRNA and protein in vibrated cells. Therefore, modulation of actin cytoskeletal polymerization in response to vibration may activate the NF‐κB signaling pathway and subsequently upregulate IL‐6 and IL‐8 expression in hPDL cells.  相似文献   

9.
10.
11.
The aim of this study was to evaluate the played by oxidative stress in the apoptotic response in different brain areas of rats chronically treated with supra‐physiological doses of nandrolone decanoate (ND). Immunohistochemical study and Western blot analysis were performed to evaluate cells' apoptosis and to measure the effects of expression of specific mediators, such as NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells), Bcl‐2 (B‐cell lymphoma 2), SMAC/DIABLO (second mitochondria‐derived activator of caspases/direct IAP‐binding protein with low PI) and VMAT2 (vesicular monoamine transporter 2) on apoptosis. The results of the present study indicate that a long‐term administration of ND promotes oxidative injury in rat brain specific areas. A link between oxidative stress and NF‐κB signalling pathways is supported by our results. In addition to high levels of oxidative stress, we consistently observed a strong immunopositivity to NF‐κB. It has been argued that one of the pathways leading to the activation of NF‐κB could be under reactive oxygen species (ROS)‐mediated control. In fact, growing evidence suggests that although in limited doses, endogenous ROS may play an activating role in NF‐κB signalling, while above a certain threshold, they may negatively impact upon this signalling. However, a mutual crosstalk between ROS and NF‐κB exists and recent studies have shown that ROS activity is subject to negative feedback regulation by NF‐κB, and that this negative regulation of ROS is the means through which NF‐κB counters programmed cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Myocardial infarction (MI) is an acute coronary syndrome that refers to tissue infarction of the myocardium. This study aimed to investigate the effect of long intergenic non‐protein‐coding RNA (lincRNA) ATPase plasma membrane Ca2+ transporting 1 antisense RNA 1 (ATP2B1‐AS1) against MI by targeting nuclear factor‐kappa‐B inhibitor alpha (NFKBIA) and mediating the nuclear factor‐kappa‐B (NF‐κB) signalling pathway. An MI mouse model was established and idenepsied by cardiac function evaluation. It was determined that ATP2B1‐AS1 was highly expressed, while NFKBIA was poorly expressed and NF‐κB signalling pathway was activated in MI mice. Cardiomyocytes were extracted from mice and introduced with a series of mouse ATP2B1‐AS1 vector, NFKBIA vector, siRNA‐mouse ATP2B1‐AS1 and siRNA‐NFKBIA. The expression of NF‐κBp50, NF‐κBp65 and IKKβ was determined to idenepsy whether ATP2B1‐AS1 and NFKBIA affect the NF‐κB signalling pathway, the results of which suggested that ATP2B1‐AS1 down‐regulated the expression of NFKBIA and activated the NF‐κB signalling pathway in MI mice. Based on the data from assessment of cell viability, cell cycle, apoptosis and levels of inflammatory cytokines, either silencing of mouse ATP2B1‐AS1 or overexpression of NFKBIA was suggested to result in reduced cardiomyocyte apoptosis and expression of inflammatory cytokines, as well as enhanced cardiomyocyte viability. Our study provided evidence that mouse ATP2B1‐AS1 silencing may have the potency to protect against MI in mice through inhibiting cardiomyocyte apoptosis and inflammation, highlighting a great promise as a novel therapeutic target for MI.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号