首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ObjectiveTo investigate whether transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating degradable stent implantation (TMDRSI) can promote myocardial regeneration after acute myocardial infarction (AMI).MethodsA model of AMI was generated by ligating the mid-third of left anterior descending artery (LAD) of miniswine. After 6 h, the animals were divided into none-treatment (control) group (n = 6) and TMDRSI group (n = 6). For TMDRSI group, two channels with 3.5 mm in diameter were established by a self-made drill in the AMI region, into which a stent was implanted. Expression of stromal cell-derived factor-1α (SDF-1α) and CXC chemokine receptor 4 (CXCR4), cardiac stem cell (CSC)-mediated myocardial regeneration, myocardial apoptosis, myocardial viability, and cardiac function were assessed at various time-points.ResultsSix weeks after the operation, CSCs were found to have differentiated into cardiomyocytes to repair the infarcted myocardium, and all above indices showed much improvement in the TMDRSI group compared with the control group (P < 0.001).ConclusionsThe new method has shown to be capable of promoting CSCs proliferation and differentiation into cardiomyocytes through activating the SDF-1/CXCR4 axis, while inhibiting myocardial apoptosis, thereby enhancing myocardial regeneration following AMI and improving cardiac function. This may provide a new strategy for myocardial regeneration following AMI.  相似文献   

2.
We suggested that low‐level laser irradiation (LLLI) precondition prior to cell transplantation might remodel the hostile milieu of infarcted myocardium and subsequently enhance early survival and therapeutic potential of implanted bone marrow mesenchymal stem cells (BMSCs). Therefore, in this study we wanted to address: (1) whether LLLI pre‐treatment change the local cardiac micro‐environment after myocardial infarction (MI) and (2) whether the LLLI preconditions enhance early cell survival and thus improve therapeutic angiogenesis and heart function. MI was induced by left anterior descending artery ligation in female rats. A 635 nm, 5 mW diode laser was performed with energy density of 0.96 J/cm2 for 150 sec. for the purpose of myocardial precondition. Three weeks later, qualified rats were randomly received with LLLI precondition (n= 26) or without LLLI precondition (n= 27) for LLLI precondition study. Rats that received thoracotomy without coronary ligation were served as sham group (n= 24). In the cell survival study, rats were randomly divided into 4 groups: serum‐free culture media injection (n= 8), LLLI precondition and culture media injection (n= 8), 2 million male BMSCs transplantation without LLLI pre‐treatment (n= 26) and 2 million male BMSCs transplantation with LLLI precondition (n= 25) group, respectively. Vascular endothelial growth factor (VEGF), glucose‐regulated protein 78 (GRP78), superoxide dismutase (SOD) and malondialdehyde (MDA) in the infarcted myocardium were evaluated by Western blotting, real‐time PCR and colorimetry, respectively, at 1 hr, 1 day and 1 week after laser irradiation. Cell survival was assayed with quantitative real‐time PCR to identify Y chromosome gene and apoptosis was assayed with transferase‐mediated dUTP end labelling staining. Capillary density, myogenic differentiation and left ventricular function were tested by immunohistochemistry and echocardiography, respectively, at 1 week. After LLLI precondition, increased VEGF and GRP78 expression, as well as the enhanced SOD activity and inhibited MDA production, was observed. Compared with BMSC transplantation and culture media injection group, although there was no difference in the improved heart function and myogenic differentiation, LLLI precondition significantly enhanced early cell survival rate by 2‐fold, decreased the apoptotic percentage of implanted BMSCs in infarcted myocardium and thus increased the number of newly formed capillaries. Taken together, LLLI precondition could be a novel non‐invasive approach for intraoperative cell transplantation to enhance cell early survival and therapeutic potential.  相似文献   

3.
Bone marrow mesenchymal stem cells (BMSCs) emerge as a promising approach for treating heart diseases. However, the effects of BMSCs‐based therapy on cardiac electrophysiology disorders after myocardial infarction were largely unclear. This study was aimed to investigate whether BMSCs transplantation prevents cardiac arrhythmias and reverses potassium channels remodelling in post‐infarcted hearts. Myocardial infarction was established in male SD rats, and BMSCs were then intramyocardially transplanted into the infarcted hearts after 3 days. Cardiac electrophysiological properties in the border zone were evaluated by western blotting and whole‐cell patch clamp technique after 2 weeks. We found that BMSCs transplantation ameliorated the increased heart weight index and the impaired LV function. The survival of infarcted rats was also improved after BMSCs transplantation. Importantly, electrical stimulation‐induced arrhythmias were less observed in BMSCs‐transplanted infarcted rats compared with rats without BMSCs treatment. Furthermore, BMSCs transplantation effectively inhibited the prolongation of action potential duration and the reduction of transient and sustained outward potassium currents in ventricular myocytes in post‐infarcted rats. Consistently, BMSCs‐transplanted infarcted hearts exhibited the increased expression of KV4.2, KV4.3, KV1.5 and KV2.1 proteins when compared to infarcted hearts. Moreover, intracellular free calcium level, calcineurin and nuclear NFATc3 protein expression were shown to be increased in infarcted hearts, which was inhibited by BMSCs transplantation. Collectively, BMSCs transplantation prevented ventricular arrhythmias by reversing cardiac potassium channels remodelling in post‐infarcted hearts.  相似文献   

4.
Background and Purpose: The in vivo cardiac differentiation and functional effects of unmodified adult bone marrow mesenchymal stem cells (BMSCs) after myocardial infarction (MI) is controversial. Our previous results suggested that hypergravity promoted the cardiomyogenic differentiation of BMSCs, and thus we postulated that ex vivo pretreatment of BMSCs using hypergravity and 5‐azacytidine (5‐Aza) would lead to cardiomyogenic differentiation and result in superior biological and functional effects on cardiac regeneration of infarcted myocardium. Methods: We used a rat MI model generated by ligation of the coronary artery. Homogeneous rat BMSCs were isolated, culture expanded, and differentiated into a cardiac lineage by adding hypergravity (2G) for 3 days and 5‐Aza (50 lmol/L, 24 h). Rats underwent BMSCs (labeled with DAPI) injection after the infarction and were randomized into five groups. Group A rats received the control medium, Group B rats received unmodified BMSCs, Group C rats received BMSCs treated with hypergravity, Group D rats received BMSCs treated with 5‐Aza, and Group E rats received BMSCs treated with 5‐Aza and hypergravity (n = 6). Results: After hypergravity and 5‐Aza treatment, BMSCs showed positive for the early muscle and cardiac markers GATA‐4, MEF‐2, and Nkx2‐5 with RT‐PCR. We also found that hypergravity could enhance the activities of MEF‐2 via promoting the nuclear export of HDAC5. The frozen section showed that the implanted BMSCs labeled with DAPI survived and angiogenesis was identified at the implantation site. In Groups B, C, D, and E rats, pre‐treated BMSCs colocalized with α‐actinin, and Group E rats showed a significantly larger increase in left ventricular function. Conclusions: The biological ex vivo cardiomyogenic differentiation of adult BMSCs with hypergravity and 5‐Aza prior to their transplantation is feasible and appears to improve their in vivo cardiac differentiation as well as the functional recovery in a rat model of the infarcted myocardium. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

5.
The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase the efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the expression of bFGF but also improve its secretion. The FGF4-bFGF BMSCs thus can enhance the survival of the transplanted cells, diminish myocardial fibrosis, promote myocardial angiogenesis, and improve cardiac functions.  相似文献   

6.
Matrigel promotes angiogenesis in the myocardium from ischemic injury and prevents remodelling of the left ventricle. We assessed the therapeutic efficacy of intracardiac matrigel injection and matrigel‐mediated stem cell homing in a rat myocardial infarction (MI) model. Following MI, matrigel (250 μl) or phosphate‐buffered solution (PBS) was delivered by intracardiac injection. Compared to the MI control group (MI‐PBS), matrigel significantly improved left ventricular function (n= 11, P < 0.05) assessed by pressure–volume loops after 4 weeks. There is no significant difference in infarct size between MI‐matrigel (MI‐M; 21.48 ± 1.49%, n= 10) and MI‐PBS hearts (20.98 ± 1.25%, n= 10). The infarct wall thickness of left ventricle is significantly higher (P < 0.01) in MI‐M (0.72 ± 0.02 mm, n= 10) compared with MI‐PBS (0.62 ± 0.02 mm, n= 10). MI‐M hearts exhibited higher capillary density (border 130.8 ± 4.7 versus 115.4 ± 6.0, P < 0.05; vessels per high‐power field [HPF; 400×], n= 6) than MI‐PBS hearts. c‐Kit+ stem cells (38.3 ± 5.3 versus 25.7 ± 1.5 c‐Kit+ cells per HPF [630×], n= 5, P < 0.05) and CD34+ cells (13.0 ± 1.51 versus 5.6 ± 0.68 CD34+ cells per HPF [630×], n= 5, P < 0.01) were significantly more numerous in MI‐M than in MI‐PBS in the infarcted hearts (n= 5, P < 0.05). Intracardiac matrigel injection restores myocardial functions following MI, which may attribute to the improved recruitment of CD34+ and c‐Kit+ stem cells.  相似文献   

7.
The study was aimed to investigate the mechanism and administration timing of bone marrow‐derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)‐induced pulmonary fibrosis mice. Thirty‐six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase‐1 (TIMP‐1), γ‐interferon (INF‐γ) and transforming growth factor β1 (TGF‐β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up‐regulated MMP9, TIMP‐1, INF‐γ and TGF‐β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down‐regulating MMP9, TIMP‐1, INF‐γ and TGF‐β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Copyright © 2015 John Wiley & Sons, Ltd. Highlights are as follows:
    相似文献   

8.
After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re‐establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full‐length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9‐week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell‐based gene therapy provides a new approach to cardiac regeneration.  相似文献   

9.
To explore the impact of myocardial injection of mesenchymal stem cells (MSCs) and specific recombinant human VEGF165 (hVEGF165) plasmid on collagen remodelling in rats with furazolidone induced dilated cardiomyopathy (DCM). DCM was induced by furazolidone (0.3 mg/bodyweight (g)/day per gavage for 8 weeks). Rats were then divided into four groups: (i) PBS group (n = 18): rats received equal volume myocardial PBS injection; (ii) MSCs group (n = 17): 100 μl culture medium containing 105 MSCs were injected into four sites of left ventricular free wall (25 μl per site); (iii) GENE group (n = 18): pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid [5 × 109 pfu (0.2 ml)] were injected into four sites of left ventricular free wall (0.05 ml per site)] and (iv) MSCs+GENE group (n = 17): rats received both myocardial MSCs and pCMVen‐MLC2v‐EGFP‐VEGF165 plasmid injections. After 4 weeks, cardiac function was evaluated by echocardiography. Myocardial mRNA expressions of type I, type III collagen and transforming growth factor (TGF)‐β1 were detected by RT‐PCR. The protein expression of hVEGF165 was determined by Western blot. Myocardial protein expression of hVEGF165 was demonstrated in GENE and MSCs+GENE groups. Cardiac function was improved in MSCs, GENE and MSCs+GENE groups. Collagen volume fraction was significantly reduced and myocardial TGF‐β1 mRNA expression significantly down‐regulated in both GENE and MSCs+GENE groups, collagen type I/III ratio reduction was more significant in MSCs+GENE group than in MSCs or GENE group. Myocardial MSCs and hVEGF165 plasmid injection improves cardiac function possibly through down‐regulating myocardial TGF‐β1 expression and reducing the type I/III collagen ratio in this DCM rat model.  相似文献   

10.
Adult bone marrow‐derived very small embryonic‐like stem cells (VSEL‐SCs) exhibit a Sca‐1+/Lin/CD45 phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 106) of freshly isolated, non‐expanded VSEL‐SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL‐SCs in the marrow is very low, we examined whether VSEL‐SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n= 11), 1 × 105 enhanced green fluorescent protein (EGFP)‐labelled expanded untreated VSEL‐SCs (group II, n= 7), or 1 × 105 EGFP‐labelled expanded VSEL‐SCs pre‐incubated in a cardiogenic medium (group III, n= 8). At 35 days after myocardial infarction (MI), mice treated with pre‐incubated VSEL‐SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle‐treated controls. In contrast, transplantation of expanded but untreated VSEL‐SCs did not produce appreciable reparative benefits. Scattered EGFP+ cells expressing α‐sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)‐1, or von Willebrand factor were present in VSEL‐SC‐treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL‐SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre‐incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results support the potential therapeutic utility of VSEL‐SCs for cardiac repair.  相似文献   

11.
Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 genes. Lymphangioleiomyomatosis (LAM) can be sporadic or associated with TSC and is characterized by widespread pulmonary proliferation of abnormal α‐smooth muscle (ASM)‐like cells. We investigated the features of ASM cells isolated from chylous thorax of a patient affected by LAM associated with TSC, named LAM/TSC cells, bearing a germline TSC2 mutation and an epigenetic defect causing the absence of tuberin. Proliferation of LAM/TSC cells is epidermal growth factor (EGF)‐dependent and blockade of EGF receptor causes cell death as we previously showed in cells lacking tuberin. LAM/TSC cells spontaneously detach probably for the inactivation of the focal adhesion kinase (FAK)/Akt/mTOR pathway and display the ability to survive independently from adhesion. Non‐adherent LAM/TSC cells show an extremely low proliferation rate consistent with tumour stem‐cell characteristics. Moreover, LAM/TSC cells bear characteristics of stemness and secrete high amount of interleukin (IL)‐6 and IL‐8. Anti‐EGF receptor antibodies and rapamycin affect proliferation and viability of non‐adherent cells. In conclusion, the understanding of LAM/TSC cell features is important in the assessment of cell invasiveness in LAM and TSC and should provide a useful model to test therapeutic approaches aimed at controlling their migratory ability.  相似文献   

12.
The molecular mechanisms that drive the development of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) remain elusive. Accumulated evidence suggests that microRNAs are essential regulators of cardiac remodelling. We have been suggested that microRNAs could play a role in the process of HCM. To uncover which microRNAs were changed in their expression, microRNA microarrays were performed on heart tissue from HCM patients (n = 7) and from healthy donors (n = 5). Among the 13 microRNAs that were differentially expressed in HCM, miR‐451 was the most down‐regulated. Ectopic overexpression of miR‐451 in neonatal rat cardiomyocytes (NRCM) decreased the cell size, whereas knockdown of endogenous miR‐451 increased the cell surface area. Luciferase reporter assay analyses demonstrated that tuberous sclerosis complex 1 (TSC1) was a direct target of miR‐451. Overexpression of miR‐451 in both HeLa cells and NRCM suppressed the expression of TSC1. Furthermore, TSC1 was significantly up‐regulated in HCM myocardia, which correlated with the decreased levels of miR‐451. As TSC1 is a known positive regulator of autophagy, we examined the role of miR‐451 in the regulation of autophagy. Overexpression of miR‐451 in vitro inhibited the formation of the autophagosome. Conversely, miR‐451 knockdown accelerated autophagosome formation. Consistently, an increased number of autophagosomes was observed in HCM myocardia, accompanied by up‐regulated autophagy markers, and the lipidated form of LC3 and Beclin‐1. Taken together, our findings indicate that miR‐451 regulates cardiac hypertrophy and cardiac autophagy by targeting TSC1. The down‐regulation of miR‐451 may contribute to the development of HCM and may be a potential therapeutic target for this disease.  相似文献   

13.
Although past studies observed the changes of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in end‐stage heart failure (HF) patients, a consistent and clear pattern of type‐specific MMPs and/or TIMPs has yet to be further defined. In this study, proteomic approach of human protein antibody arrays was used to compare MMP and TIMP expression levels of left ventricular (LV) myocardial samples from end‐stage HF patients due to dilated cardiomyopathy (DCM) with those from age‐ and sex‐ matched non‐failing patients. Western blot analysis, immunohistochemistry and ELISA were used for validation of our results. We observed that MMP‐10 and ‐7 abundance increased, accompanied by decreased TIMP‐4 in DCM failing hearts (n= 8) compared with non‐failing hearts (n= 8). The results were further validated in a cohort of 34 end‐stage HF patients derived from three forms of cardiomyopathies. Cardiac and plasma MMP‐10 levels were positively correlated with the LV end‐diastolic dimension in this HF cohort. In addition, we observed that insulin‐like growth factor‐2 promoted MMP‐10 production in neonatal rat cardiomyocytes. In conclusion, this study demonstrated a selective up‐regulation of MMP‐10 and ‐7 along with a discordant change of TIMP‐4, and a positive correlation between MMP‐10 levels and the degree of LV dilation in end‐stage HF patients. Our findings suggest that type‐specific dysregulation of MMPs and TIMPs is associated with LV remodelling in end‐stage HF patients, and MMP‐10 may act as a novel biomarker for LV remodelling.  相似文献   

14.
C. Basset‐Léobon, L. Lacoste‐Collin, J. Aziza, J.C. Bes, S. Jozan and M. Courtade‐Saïdi
Cut‐off values and significance of Oil Red O‐positive cells in bronchoalveolar lavage fluid Objective: To evaluate the percentage and predictive value of Oil Red O‐positive macrophages (ORO‐PM) to identify lipid‐laden macrophages in bronchoalveolar lavage fluids (BALF) from patients with different pathologies. Methods: The percentage and absolute numbers of ORO‐PM were evaluated in 305 BALF. The patients were separated into ten groups: corticosteroid treatment (n = 18), amiodarone treatment (n = 8), interstitial fibrosis (n = 11), human immunodeficiency virus (HIV)‐positive (n = 25), infectious pneumonia (n = 43), severe haematological disorder (n = 25), interstitial syndrome (n = 109), suspicion of cancer (n = 17), transplant recipients (n = 50) and controls (n = 43). The total and differential cell counts in BALF were recorded. The presence of specific pathogens was also noted. Parametric and non‐parametric tests were used to compare the values between groups. Receiver–operating characteristics (ROC) curves were established in order to determine a cut‐off value. Results: The percentages of ORO‐PM were (mean ± standard deviation) 21.67 ± 29.12 in the corticosteroid group, 10.00 ± 12.49 in the amiodarone group, 19.45 ± 20.72 in the interstitial fibrosis group, 47.80 ± 30.46 in the HIV group, 19.72 ± 26.26 in the infectious pneumonia group, 27.42 ± 30.04 in the severe haematological disorder group, 25.18 ± 30.63 in the interstitial syndrome group, 17.64 ± 27.76 in the suspicion of cancer group, 22.50 ± 27.27 in the transplanted recipients group and 2.63 ± 3.48 in the control group. Significantly higher values were found in all groups when compared with the control group (P < 0.001). Only the HIV group showed higher numbers of ORO‐PM when compared with the interstitial syndrome group (P < 0.01). According to ROC curves, > 6% ORO‐PM was suggested as the positive cut‐off value. Conclusion: Significantly increased numbers of ORO‐PM were associated with various lung pathologies. However, the higher numbers observed in HIV patients require further investigations.  相似文献   

15.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

16.
目的:探讨恶性胆道梗阻患者行PTBD(Percutaneous Transhepatic Biliary Drainage)术中金属支架置入成功率的影响因素。方法:回顾性搜集2010年10月-2017年1月上海市第一人民医院收治的因患有近端恶性胆道梗阻行PTBD术患者的相关临床资料。比较不同原发病因患者支架置入情况。根据患者支架置入是否成功将其分为支架组和非支架组,比较患者的一般临床特征。结果:胰腺癌、胃癌和胆囊癌为本研究中数量上前3位的肿瘤,将以上3组分别按照支架置入数行x~2检验,其中胰腺癌(n=18,支架=6)和胃癌(n=14,支架=11)有统计学意义。将50例患者分为支架组(n=28)和非支架组(n=22),组间比较差异有统计学意义的因素包括:白细胞计数(支架组=6.40±3.40×10~9/L,非支架组=10.74±6.41×10~9/L),中性粒细胞计数(支架组=4.90±3.06×10~9/L,非支架组=8.92±6.25×10~9/L),胆道感染(支架组=9,非支架组=15)。进一步将该50例患者分为6组:胰腺癌-胆道感染组、胃癌-胆道感染组、其他肿瘤-胆道感染组、胰腺癌+胆道感染组、胃癌+胆道感染组、其他肿瘤+胆道感染组。将以上6组分别按照支架置入数行x~2检验,胰腺癌+胆道感染组(n=11,支架=1,P=0.001)有统计学意义。结论:PTBD术对于恶性胆道梗阻是一种有效的姑息治疗手段。胆道感染是PTBD术中支架置入成功的不利因素,胰腺癌合并胆道感染会显著降低PTBD术中支架置入成功率。  相似文献   

17.
Stem cell capability enhanced with cytokine administration is a promising treatment for myocardial infarction. Bone marrow stem cells (BMSCs) were isolated from C57BL/6 mice (8-12 weeks old) expressing GFP and characterized with c-kit and CD34. Infarcted heart tissue fragments were placed into dishes with BMSCs and medium supplemented with G-CSF, SCF, IGF-1 or combinations thereof were given to the BMSC-infarcted myocardium in vitro model. The IGF-1-G-CSF group showed significantly higher migration (67.7% ± 2.6) of c-kit+ BMSCs towards the ischemic tissue and expressed MEF-2 (43.7% ± 1.7). Of the single treatment groups, the G-CSF group demonstrated significantly higher migration of c-kit+ BMSCs (60.5 ± 2.7) with MEF-2 expression (38.7 ± 1.4). IGF-1 complements G-CSF and was relatively more significant in its effects on BMSC migration and cardiac lineage commitment towards ischemic heart tissue.  相似文献   

18.
It has been reported that CXCR4‐overexpressing mesenchymal stem cells (MSCCX4) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4‐derived paracrine cardio‐protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4, and CXCR4 gene‐specific siRNA‐transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs‐conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation–regulating genes were assessed by real‐time polymerase chain reaction (RT‐PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium‐treated group than control group, while this proproliferative effect was reduced in CXCR4 gene‐specific siRNA‐transduced MSC–treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor‐β2 was observed in hypoxia‐exposed MSCCX4. In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.  相似文献   

19.
This experimental study was designed to clarify the relationship between cardiomyocyte apoptosis and tumour necrosis factor‐alpha (TNF‐α) expression, and confirm the effect of TNF‐α on cardiac dysfunction after coronary microembolization (CME) in mini‐pigs. Nineteen mini‐pigs were divided into three groups: sham‐operation group (n = 5), CME group (n = 7) and adalimumab pre‐treatment group (n = 7; TNF‐α antibody, 2 mg/kg intracoronary injection before CME). Magnetic resonance imaging (3.0‐T) was performed at baseline, 6th hour and 1 week after procedure. Cardiomyocyte apoptosis was detected by cardiac‐TUNEL staining, and caspase‐3 and caspase‐8 were detected by RT‐PCR and immunohistochemistry. Furthermore, serum TNF‐α, IL‐6 and troponin T were analysed, while myocardial expressions of TNF‐α and IL‐6 were detected. Both TNF‐α expression (serum level and myocardial expression) and average number of apoptotic cardiomyocyte nuclei were significantly increased in CME group compared with the sham‐operation group. Six hours after CME, left ventricular end‐systolic volume (LVESV) was increased and the left ventricular ejection fraction (LVEF) was decreased in CME group. Pre‐treatment with adalimumab not only significantly improved LVEF after CME (6th hour: 54.9 ± 2.3% versus 50.4 ± 3.9%, P = 0.036; 1 week: 56.7 ± 4.2% versus 52.7 ± 2.9%, P = 0.041), but also suppressed cardiomyocyte apoptosis and the expression of caspase‐3 and caspase‐8. Meanwhile, the average number of apoptotic cardiomyocytes nuclei was inversely correlated with LVEF (r = ?0.535, P = 0.022). TNF‐α‐induced cardiomyocyte apoptosis is likely involved in cardiac dysfunction after CME. TNF‐α antibody therapy suppresses cardiomyocyte apoptosis and improves early cardiac function after CME.  相似文献   

20.
The technique of stem cells or hepatocytes transplantation has recently improved in order to bridge the time before whole-organ liver transplantation. In the present study, unfractionated bone marrow stem cells (BMSCs) were harvested from the tibial and femoral marrow compartments of male mice, which were cultured in Dulbecco''s modified Eagle''s medium (DMEM) with and without hepatocyte growth factor (HGF), and then transplanted into Schistosoma mansoni-infected female mice on their 8th week post-infection. Mice were sacrificed monthly until the third month of bone marrow transplantation, serum was collected, and albumin concentration, ALT, AST, and alkaline phosphatase (ALP) activities were assayed. On the other hand, immunohistopathological and immunohistochemical changes of granuloma size and number, collagen content, and cells expressing OV-6 were detected for identification of liver fibrosis. BMSCs were shown to differentiate into hepatocyte-like cells. Serum ALT, AST, and ALP were markedly reduced in the group of mice treated with BMSCs than in the untreated control group. Also, granuloma showed a marked decrease in size and number as compared to the BMSCs untreated group. Collagen content showed marked decrease after the third month of treatment with BMSCs. On the other hand, the expression of OV-6 increased detecting the presence of newly formed hepatocytes after BMSCs treatment. BMSCs with or without HGF infusion significantly enhanced hepatic regeneration in S. mansoni-induced fibrotic liver model and have pathologic and immunohistopathologic therapeutic effects. Also, this new therapeutic trend could generate new hepatocytes to improve the overall liver functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号