首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The connection between Netherton syndrome and overactivation of epidermal/dermal proteases, particularly Kallikrein 5 (KLK5) has been well established and it is expected that a KLK5 inhibitor would improve the dermal barrier and also reduce the pain and itch that afflict Netherton syndrome patients. One of the challenges of covalent protease inhibitors has been achieving selectivity over closely related targets. In this paper we describe the use of structural insight to design and develop a selective and highly potent reversibly covalent KLK5 inhibitor from an initial weakly binding fragment.  相似文献   

2.
A series of 1,3,6-trisubstituted 1,4-diazepan-7-ones were prepared as kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Previously reported compounds 13 were potent human KLK7 inhibitors; however, they did not exhibit inhibitory activity against mouse KLK7. Comparison of the human and mouse KLK7 structures reveals the cause of this species differences; therefore, compounds that could inhibit both KLK7s were designed, synthesized, and evaluated. Through this structure-based drug design, compound 22g was identified as an inhibitor against human and mouse KLK7, and only one of the enantiomers, (–)–22g, exhibited potent inhibitory activity. Furthermore, the crystal structure of mouse KLK7 complexed with 22g enabled the elucidation of structure–activity relationships and justified 22g as a valuable compound to overcome the species differences.  相似文献   

3.
A novel series of 1,3,6-trisubstituted 1,4-diazepan-7-ones were investigated as human kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Based on the X-ray co-crystal structure of compound 1 bound to human KLK7, the derivatives of this scaffold were designed, synthesized, and evaluated. Through structure-activity relationship studies focused on the side chain located in the prime site region of the enzyme, representative compounds 15, 33a, and 35a were identified as highly potent and selective inhibitors of human KLK7.  相似文献   

4.
Compound 1, composed of a 1,3,6-trisubstituted 1,4-diazepane-7-one, was discovered as a novel human kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme, SCCE) inhibitor, and its derivatives were synthesized and evaluated. Structure–activity relationship studies of the amidoxime unit and benzoic acid part of this new scaffold led to the identification of 25 and 34, which were more potent than the hit compound, 1. The X-ray co-crystal structure of compound 25 and human KLK7 revealed the characteristic interactions and enabled explanations of the structure–activity relationship.  相似文献   

5.
Human kallikrein 7, a major protease of human skin, has been synthesized directly in its native conformation in Escherichia coli by forcing the secretion of the newly synthesized polypeptide into the bacterial periplasm. The procedure yields a stable kallikrein 7 with highly specific activity that is inhibited efficiently by its specific inhibitor LEKTI domain 6. The protein was crystallized, and its three-dimensional structure was solved in the absence of protease inhibitors. The structure obtained agrees with that reported recently for human tissue kallikrein 7 crystallized in the presence of protease inhibitors from a preparation obtained in a baculovirus protein expression system. A model of the interaction between the protease and its inhibitor is proposed on the basis of both the three-dimensional structure of human tissue kallikrein 7 reported here and that of the LEKTI domain 6 solved previously by NMR.  相似文献   

6.
Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with Ki around 1 nM, KLK4 with Ki = 27.3 nM, KLK6 with Ki = 140 nM, caspase-14 with a Ki approximating 1 μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members.  相似文献   

7.
A series of imidazolinylindole derivatives were discovered as novel kallikrein 7 (KLK7, stratum corneum chymotryptic enzyme) inhibitors. Structure-activity relationship (SAR) studies led to the identification of potent human KLK7 inhibitors. By further modification of the benzenesulfonyl moiety to overcome species differences in inhibitory activity, potent inhibitors against both human and mouse KLK7 were identified. Furthermore, the complex structure of 25 with mouse KLK7 could explain the SAR and the cause of the species differences in inhibitory activity.  相似文献   

8.
Emerging data indicate that serine proteases of the kallikrein family (KLK) are implicated in various human diseases, including carcinoma; however, kallikrein gene expression has never been investigated in lung cancer. Using RT-PCR and Western blotting, we demonstrated the expression of both KLK5 and KLK7, and their respective proteins (hK5 and hK7) in tumoral and nontumoral lung tissues. Quantitative gene expression was then analyzed in a cohort of 56 patients with non-small cell lung cancer by real-time RT-PCR. KLK5 expression is significantly more expressed in squamous cell carcinoma than in matched nonmalignant lung tissue (P=0.02), whereas expression of KLK7 was decreased in adenocarcinoma (P=0.003). Multivariate analysis revealed diverse correlations between the KLK5 and KLK7 expression levels in nonmalignant and malignant tissues, and clinical parameters, including histotype, metastatic status, and grade. Our findings provide new insight into kallikrein gene expression in hormone-independent carcinoma. Altogether, our results suggest that variability in KLK5 and KLK7 gene expression might be involved in lung tumorigenesis and useful for clinical purposes.  相似文献   

9.
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.  相似文献   

10.
Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.  相似文献   

11.
Kallikrein-related peptidases (KLKs) are a group of serine proteases widely expressed in various tissues and involved in a wide range of physiological and pathological processes. Although our understanding of the pathophysiological roles of most KLKs has blossomed in recent years, identification of the direct endogenous substrates of human KLKs remains an unmet objective. In this study we employed a degradomics approach to systemically investigate the endogenous substrates of KLK7 in an effort to understand the molecular pathways underlying KLK7 action in skin. We identified several previously known as well as novel protein substrates. Our most promising candidates were further validated with the use of targeted quantitative proteomics (selected reaction monitoring methods) and in vitro recombinant protein digestion assays. Our study revealed midkine, CYR61, and tenascin-C as endogenous substrates for KLK7. Interestingly, some of these substrates (e.g. midkine) were prone to proteolytic cleavage only by KLK7 (and not by other skin-associated KLKs), whereas others (e.g. CYR61 and tenascin-C) could be digested by several KLKs. Furthermore, using melanoma cell line, we show that KLK7-mediated cleavage of midkine results in an overall reduction in the pro-proliferative and pro-migratory effect of midkine. An inverse relation between KLK7 and midkine is also observed in human melanoma tissues. In summary, our degradomics approach revealed three novel endogenous substrates for KLK7, which may shed more light on the pathobiological roles of KLK7 in human skin. Similar substrate screening approaches could be applied for the discovery of biological substrates of other protease.  相似文献   

12.
13.
Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven’t been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies. Among them, compound 7j showed the most potent inhibitory activity against HDAC6 with IC50 of 34?nM and exhibited the great inhibitory activities against a human breast cancer cell line MCF-7 with IC50 of 9?μM in vitro. Meanwhile, the compound also exhibited moderate FGFR1 inhibitory activities. This study provides new tool compounds for further exploration of dual HDAC/FGFR1 inhibition.  相似文献   

14.
Human kallikreins 5 and 7 (KLK5 and KLK7) exhibit trypsin- and chymotrypsin-like activities and are involved in pathologies related to skin desquamation process. A series of new 3-acyltetramic acids were developed as a novel class of inhibitors of KLK5, KLK7 and trypsin enzymes. The nature and length of the acyl chain is crucial to the KLK5, KLK7 and trypsin inhibition activities, and the most potent compounds (but not the most selective) 2b, 2c and 2g showed low micromolar IC50 values. While very few of the compounds were selective for KLK5, the selective inhibition of trypsin against chymotrypsin was achieved. Our molecular modelling studies revealed that the double bond in 2g provided the best fit in the binding site of KLK5, while the hydrogen bonding interactions modulated the best fit of 2c in the binding site of KLK7 due to the hydrophobicity of the cavity.  相似文献   

15.
We describe the structure-activity relationship of the C7-position of pyrano[3,4-b]indole-based inhibitors of HCV NS5B polymerase. Further exploration of the allosteric binding site led to the discovery of the significantly more potent compounds 13 and 14.  相似文献   

16.
Human kallikrein 1 (KLK1) is the most extensively studied member of this family and plays a major role in inflammation processes. From Ugi multicomponent reactions, isomannide-based peptidomimetic 10 and 13 where synthesized and showed low micromolar values of IC50 for KLK1 The most active compound (10) presented competitive mechanism, with three structural modifications important to interact with active site residues which corroborates its KLK1 inhibition. Finally, the most active compound also showed good ADMET profile, which indicates compound 10 as a potential hit in the search for new KLK1 inhibitors with low side effects.  相似文献   

17.
The tissue kallikrein (KLK) family contains 15 genes (KLK1KLK15) tandemly arranged on chromosome 19q13.4 that forms the largest cluster of contiguous protease genes in the human genome. Here, we provide mechanistic evidence showing that the expression of KLK13, one of the most recently identified family members, is significantly up-regulated in metastatic lung adenocarcinoma. Whilst overexpression of KLK13 resulted in an increase in malignant cell behavior, knockdown of its endogenous gene expression caused a significant decrease in cell migratory and invasive properties. Functional studies further demonstrated that KLK13 is activated via demethylation of its upstream region. The elevated KLK13 protein then enhances the ability of tumor cells to degrade extracellular laminin that, subsequently, facilitates cell metastatic potential in the in vivo SCID mouse xenograft model. KLK13 was also found to induce the expression of N-cadherin to help promote tumor cell motility. Together, these results reveal the enhancing effects of KLK13 on tumor cell invasion and migration, and that it may serve as a diagnostic/prognostic marker and a potential therapeutic target for lung cancer.  相似文献   

18.
This letter describes the discovery of a fused benzofuran scaffold viable for preparing a series of novel potent HCV NS5B polymerase non-nucleoside inhibitors. Designed on the basis of the functionalized benzofuran derivative nesbuvir (HCV-796), these compounds presumably bind similarly to the allosteric binding site in the “palm” domain of HCV NS5B protein. SAR of each potential hydrogen-bonding interaction site of this novel scaffold is discussed along with some preliminary genotypic profile and PK data of several advanced compounds.  相似文献   

19.
Netherton syndrome (NS) is a rare autosomal recessive skin disease with severe skin inflammation and scaling, a specific hair shaft defect and constant allergic manifestations. NS is caused by loss-of-function mutations in SPINK5 (serine protease inhibitor of kazal type 5) encoding LEKTI-1 (lympho-epithelial kazal type related inhibitor type 5) expressed in stratified epithelia. In vitro and in vivo studies in murine models and in NS patients have cast light on the pathogenesis of the disease and shown that LEKTI deficiency results in unopposed kallikrein-related peptidase 5 (KLK5) and KLK7 activities and to the overactivity of a new epidermal protease, elastase 2 (ELA2). Two main cascades initiated by KLK5 activity have emerged. One results in desmoglein 1 degradation and desmosome cleavage leading to stratum corneum detachment. KLK5 also activates KLK7 and ELA2, which contribute to a defective skin barrier. This facilitates allergen and microbe penetration and generates danger signals leading to caspase 1 activation and the production of active interleukin-1β. In parallel, KLK5 activates a specific cascade of allergy and inflammation by activating protease-activated receptor-2 (PAR-2) receptors. PAR-2 activation triggers the production of the major pro-Th2 cytokine TSLP (thymic stromal lymphopoietin) and several inflammatory cytokines, including tumour necrosis factor-α. Levels of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) also contribute to allergy in a PAR-2-independent manner. Patient investigations have confirmed these abnormalities and revealed a wide spectrum of disease expression, sometimes associated with residual LEKTI expression. These results have demonstrated that the tight regulation of epidermal protease activity is essential for skin homeostasis and identified new targets for therapeutic intervention. They also provide a link with atopic dermatitis through deregulated protease activity, as recently supported by functional studies of the E420K LEKTI variant.  相似文献   

20.
Histone-lysine N-methyltransferase SET7 emerged as a potential target for multiple cancers. In a virtual screening program used to explore new and potent inhibitors of SET7, compound 16 was discovered as a top hit with an IC50 value of 6.02 μM. A further similarity search afforded a new compound 23, which exhibited better activity against SET7 with an IC50 value of 1.96 μM. Importantly, compound 23 selectively inhibited the proliferation of MV4-11 cells. Comprehensively, compound 23 can serve as a lead for further identification and development of more potent SET7 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号