首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1. Most woody plant species in tropical habitats are primarily vertebrate‐dispersed, but interactions between ants and fallen seeds and fruits are frequent. This study assesses the species‐specific services provided by ants to fallen arillate seeds of Siparuna guianensis, a primarily bird‐dispersed tree in cerrado savanna. The questions of which species interact with fallen seeds, their relative contribution (versus vertebrates) to seed removal, and the potential effects on seedling establishment are investigated. 2. Seeds are removed in similar quantities in caged and control treatments, suggesting that ants are the main dispersers on the ground. Five ant species attended seeds. Pheidole megacephala (≈0.4 cm) cooperatively transported seeds, whereas the smaller Pheidole sp. removed the seed aril on spot. Large (> 1.0 cm) Odontomachus chelifer, Pachycondyla striata, and Ectatomma edentatum individually carried seeds up to 4 m. Bits of aril are fed to larvae and intact seeds are discarded near the nest entrance. 3. Overall, greater numbers of seedlings were recorded near ant nests than in control plots without nests. This effect, however, was only detected near P. megacephala and P. striata nests, where soil penetrability was greater compared with controls. Soil nutrients did not differ between paired plots. 4. This study confirms the prevalence of ant–seed interactions in cerrado and shows that ant‐derived benefits are species‐specific. Ant services range from seed cleaning on the spot to seed displacement promoting non‐random spatial seedling recruitment. Although seed dispersal distances by ants are likely to be shorter than those by birds, our study of S. guianensis shows that fine‐scale ant‐induced seed movements may ultimately enhance plant regeneration in cerrado.  相似文献   

2.
True myrmecochory involves the dispersal of elaiosome-bearing seeds by ants. Between the guild of ants that are attracted to these seeds, only a few of them will act as effective dispersers, that is, transporting the seeds to suitable sites (the nests) for germination and plant establishment. Ant communities are known to be highly hierarchical, and subordinate ants quickly deliver resources to their nest rather than consuming it on-site, thereby avoiding encounters with more dominant species. As a result of a series of studies that were carried out during summer in semi-arid Northwest Argentina, we have found that the most important seed disperser of the myrmecochorous plant Jatropha excisa Griseb. (Euphorbiaceae), the ant Pogonomyrmex cunicularius pencosensis Forel, was the most subordinate species during interspecific interactions. The daily timing of release of the J. excisa seeds through ballistic dispersal increased their probability of being removed by the highly thermophilic P. cunicularius pencosensis. Foraging during the warmest hours of the day allowed P. cunicularius pencosensis ants to avoid the risk of interference competition with dominant species, which also behaved as elaiosome predators. As a conclusion, subordinance behaviour appears to be integral to successful myrmecochory, and also the timing of seed release plays a key role in shaping the dynamics of myrmecochorous interactions. Therefore, ant-dispersed plants should not only favour their discovery by subordinate ants, but also should present their seeds at those times of the day when the behaviourally dominant ants are less active.  相似文献   

3.
Throughout lowland Amazonia, arboreal ants collect seeds of specific plants and cultivate them in nutrient-rich nests, forming diverse yet obligate and species-specific symbioses called Neotropical ant-gardens (AGs). The ants depend on their symbiotic plants for nest stability, and the plants depend on AGs for substrate and nutrients. Although the AGs are limited to specific participants, it is unknown at what stage specificity arises, and seed fate pathways in AG epiphytes are undocumented. Here we examine the specificity of the ant-seed interaction by comparing the ant community observed at general food baits to ants attracted to and removing seeds of the AG plant Peperomia macrostachya. We also compare seed removal rates under treatments that excluded vertebrates, arthropods, or both. In the bait study, only three of 70 ant species collected P. macrostachya seeds, and 84% of observed seed removal by ants was attributed to the AG ant Camponotus femoratus. In the exclusion experiment, arthropod exclusion significantly reduced seed removal rates, but vertebrate exclusion did not. We provide the most extensive empirical evidence of species specificity in the AG mutualism and begin to quantify factors that affect seed fate in order to understand conditions that favor its departure from the typical diffuse model of plant-animal mutualism.  相似文献   

4.
Abstract Ants generally disperse seeds while feeding on fruits or structures attached to the seed. Seed dispersal as a by‐product of seed predation (dyszoochory) was recognized in specialized harvester ants, but not in ants predating seeds opportunistically. Leafcutting ants are the main herbivores in much of the Neotropics, and they have been reported to remove fruits and seeds, but their role as seed predators and dispersers has not been acknowledged. Prosopis flexuosa D.C. (Fabaceae, Mimosoideae) is the most abundant tree species in the central Monte Desert, Argentina, and it is likely to depend on secondary animal dispersal. Mammalian frugivores are usually considered its main dispersers, but the opportunity for dispersal may be small since the removal of fruits and seeds by seed predators is very intense. The objective of this study was to identify which ant species interact with P. flexuosa fruits and to evaluate their relative importance as seed predators and dispersers. In a field experiment, whole and segmented pods were offered and several ant species exploiting the fruits were identified. Additionally, all pod segments remaining around nests of the three ant species able to remove them (the leafcutters Acromyrmex lobicornis Emery and Acromyrmex striatus Roger, and Pheidole bergi Mayr) were examined during and after the P. flexuosa primary dispersal season. Up to 753 pod segments and 90 sound seeds were found accumulated in a circle of 1 m radius over nests of A. lobicornis, and even more in an examined trail. Acromyrmex striatus left a smaller proportion of sound seeds and P. bergi left a smaller number of pod segments. All tendencies were similar during shorter known periods of accumulation. Leafcutting ants are acting as important seed predators, and ‘by mistake’ may be dispersing a key non‐myrmecochorous tree. This is an unexplored path in the seed dispersal cycle of P. flexuosa that challenges the tendency to predict interactions based on classifications made with other goals.  相似文献   

5.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation.  相似文献   

6.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

7.
Exploiters of protection mutualisms are assumed to represent an important threat for the stability of those mutualisms, but empirical evidence for the commonness or relevance of exploiters is limited. Here, I describe results from a manipulative study showing that an orb‐weaver spider, Eustala oblonga, inhabits an ant‐acacia for protection from predators. This spider is unique in the orb‐weaver family in that it associates closely with both a specific host plant and ants. I tested the protective effect of acacia ants on E. oblonga by comparing spider abundance over time on acacias with ants and on acacias from which entire ant colonies were experimentally removed. Both juvenile and adult spider abundance significantly decreased over time on acacias without ants. Concomitantly, the combined abundance of potential spider predators increased over time on acacias without ants. These results suggest that ant protection of the ant‐acacia Acacia melanocerus also protects the spiders, thus supporting the hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy‐free space. Although E. oblonga takes advantage of the protection services of ants, it likely exacts little to no cost and should not threaten the stability of the ant–acacia mutualism. Indeed, the potential threat of exploiter species to protection mutualisms in general may be limited to species that exploit the material rewards traded in such mutualisms rather than the protection services.  相似文献   

8.
9.
1. Some interactions previously described as mutualistic were revealed to be commensal or parasitic in subsequent investigations. Ant‐mediated seed dispersal has been described as a mutualism for more than a century; however, recent research suggests that it may be commensal or parasitic. Plants demonstrably benefit from ant‐mediated seed dispersal, although there is little evidence available to demonstrate that the interaction benefits long‐term ant fitness. 2. Field experiments were conducted in temperate North America focused on a key seed‐dispersing ant. All herbaceous plants were removed from a forest understorey for 13 years, and supplemented ant colonies with large elaiosome‐bearing seeds aiming to examine potential long‐ and short‐term myrmecochorous plant benefits for the ants. 3. If elaiosome‐bearing seeds benefit ants, suggesting a mutualistic relationship, it is expected that there would be greater worker and/or alate abundance and greater fat reserves (colony lipid content) with seed supplementation (short‐term) and in areas with high understorey herb abundance. 4. Short‐term seed supplementation of ant colonies did not result in an increase with respect to numbers or fat stores, although it did prompt the production of colony sexuals, which is a potential fitness benefit. In the long term, however, there was no positive effect on the ants and, instead, there were negative effects because the removal of elaiosome‐bearing plants corresponded with greater colony health. 5. The data obtained in the present study suggest that the ant–plant interaction ranged from occasionally beneficial to neutral to overall negative for the ant partner. Such results did not support considering the interaction as a mutualism. Collectively, the data suggest the need to reconsider the nature of the relationship between these ants and plants.  相似文献   

10.
  • To determine seed removal influence on seed populations, we need to quantify pre‐ and post‐dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre‐ or post‐dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre‐ and post‐dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert.
  • We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre‐ and post‐dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers.
  • Birds (10–28%) removed a higher percentage of seeds than ants (2%) and rodents (1–4%) during pre‐dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62–64%) removed a higher percentage of seeds than birds (34–38%) and rodents (16–30%) during post‐dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil.
  • Birds and ants are the main pre‐ and post‐dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts.
  相似文献   

11.
The fire avoidance hypothesis proposes that a benefit of seed dispersal by ants (myrmecochory) is to protect seeds from being killed during fire and to facilitate post‐fire germination of seeds that require heat shock to break their physical dormancy. The aim of this study was to quantify the effect of fire and seed burial by a predominant seed‐dispersing ant, Rhytidoponera metallica (subfamily: Ectatomminae) on germination levels of three ant‐dispersed legume species (Pultenaea daphnoides, Acacia myrtifolia and Acacia pycnantha). Experimental burial of seeds within aluminium cans at a site prior to being burnt and at an adjacent unburnt site showed that fire increased germination levels, particularly for seeds buried at 1‐ and 2‐cm deep and that overall, germination levels differed among the three plant species. To quantify seed burial depths and post‐fire germination levels facilitated by R. metallica ants, seeds were fed to colonies prior to fire at the burnt and unburnt sites. Of the seeds buried within nests that were recovered, between 45% and 75% occurred within the upper 6 cm of the soil profile, although unexpectedly, greater percentages of seeds were recovered from the upper 0–2 cm of nests in the unburnt site compared with nests in the burnt site. Germination levels of buried seeds associated with R. metallica nests ranged from 21.2% to 29.5% in the burnt site compared with 3.1–14.8% in the unburnt site. While increased seed germination levels were associated with R. metallica nests following fire, most seeds were buried at depths below those where optimal temperatures for breaking seed dormancy occurred during the fire. We suggest that R. metallica ants may provide fire avoidance benefits to myrmecochorous seeds by burying them at a range of depths within a potential germination zone defined by intra‐ and inter‐fire variation in levels of soil heating.  相似文献   

12.
Secondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits.  相似文献   

13.
The potential explosive seed dispersal under controlled conditions and the dispersal by ants in natural populations are compared between two diplochoric species: Jatropha hieronymi Kuntze and J. excisa Griseb. The seeds of J. hieronymi are more than eightfold heavier than J. excisa seeds, and were explosively dispersed considerably further distances, reaching a maximum of almost 18 m. The differences in explosive dispersal distances between the two species seem to depend on both carpel wall thickness of the fruit and aerodynamic shape of the seed. Seed removal by ants was positively correlated with the presence of the elaiosome and was higher for J. excisa (83.6%) than for J. hieronymi (31.6%). Seed size was the major factor affecting the removal by ants, as only large bodied ants were able to transport the large seeds of J. hieronymi. The larger size and the higher oleic acid content of the elaiosomes of J. hieronymi seeds had no influence on the observed removal rates by ants. In contrast, ants transported the J. hieronymi seeds further distances than J. excisa seeds. Jatropha hieronymi distances achieved by both dispersal modes are in the range of the furthest distances described for a diplochorous species. Finally, the possible advantages of this dispersal mode in arid zones are discussed.  相似文献   

14.
To elucidate roles of an omnivorous ant, Tetramorium tsushimae Emery, against pre-dispersal seed consumers in the seed dispersal of Chamaesyce maculata (L.) Small, the effects of the seed injury by a stinkbug, Nysius plebeius Distat, on the seed removal by the ant and the germination rate were examined in laboratory experiments. The ants of T. tsushimae removed more frequently non-injured seeds than injured seeds. Therefore, low removal frequency of injured seeds by T. tsushimae ants might facilitate the increase in removal frequency of non-injured seeds, consequently leading to efficient seed dispersal of C. maculata. The germination rate of injured seeds that N. plebeius nymphs sucked was conspicuously lower than the non-injured seeds. The germination rate of seeds that T. tsushimae ants carried out of their nest was similar to that of the non-injured seeds. Thus, seed removal by T. tsushimae ants has hardly effects on the germination of these seeds. Therefore, the preferential removal of non-injured seeds by T. tsushimae ants might contribute to the dispersal success of C. maculata seeds. These results might show a novel interaction between myrmecochorous plants and ants in which the assessment of seed quality by ants contributes to the reproductive success of plants.  相似文献   

15.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

16.
Food availability is considered to be a primary factor affecting animal populations, yet few experimental tests have been performed to evaluate its actual importance in species‐rich ecosystems such as rainforests. It has been suggested that in such systems certain plant species may act as “keystone” resources for animals, but the importance of presumed keystone resources for populations has not been quantified experimentally. Using complementary seed removal and seed‐addition experiments, we determined how the supply of a presumed keystone resource, seeds of Araucaria angustifolia, affects short‐term demography of their main consumer group (small rodents) in a biodiversity hotspot, the Brazilian Atlantic Forest. We hypothesized that (i) the harvest of A. angustifolia seeds by human populations has negative impacts on rodents, and (ii) these seeds are a limiting resource for rodent populations. To test these hypotheses, we monitored populations of two species of numerically dominant rodents (Delomys dorsalis and Akodon montensis) within replicated control‐experimental plots. Manipulations of seed supply over 2 years had little effect on population size, body condition, survival, or reproduction of the two rodents, suggesting that, in the short‐term (within one generation), their populations are not food limited in Araucaria forests. Despite apparently having all the characteristics of a keystone resource, as currently defined in the literature, the seeds of A. angustifolia had limited influence on the short‐term demography of their main consumer group. In situations where purported keystone resources are seasonally abundant, their actual importance may be lower than generally assumed, and these resources then may have only localized and temporary effects on consumer populations.  相似文献   

17.
By disrupting the structure of native ant assemblages, invasive ants can have effects across trophic levels. Most studies to date, however, have focused on the impacts just two species (Linepithema humile and Solenopsis invicta). The impacts of many other invasive ant species on ecological processes in their introduced range are unknown. In this study we tested the hypothesis that the invasive ant Pachycondyla chinensis disrupts ant-seed dispersal mutualisms by displacing native ant species, especially the keystone mutualist Aphaenogaster rudis, while failing to disperse seeds itself. In a paired design we measured the impact of P. chinensis on the native ant-plant seed dispersal mutualism. The number of A. rudis workers was 96% lower in invaded than in intact plots, and the number of seeds removed was 70% lower in these plots. Finally, in invaded plots the abundance of Hexastylis arifolia, a locally abundant myrmecochorous plant, was 50% lower than in plots where P. chinensis was absent. A parsimonious interpretation of our results is that P. chinensis causes precipitous declines in the abundance of A. rudis within invaded communities, thereby disrupting the ant-plant seed dispersal mutualisms and reducing abundances of ant-dispersed plants. In sum, the magnitude of the effects of P. chinensis on seed dispersal is quantitatively similar to that documented for the intensively studied invasive Argentine ant. We suggest that more studies on the impacts of less-studied invasive ant species on seed dispersal mutualisms may increase our knowledge of the effects of these invaders on ecosystem function.  相似文献   

18.
This study investigated ant seed removal of Piper sancti-felicis, an early successional Neotropical shrub. Neotropical Piper are a classic example of bat-dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the genera Aphaenogaster, Ectatomma, Paratrechina, Pheidole, Trachymyrmex, and Wasmannia recruiting to and harvesting P. sancti-felicis seeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations in P. sancti-felicis fruits, affected foraging behavior in one genus of potential ant dispersers, Ectatomma. We found no effects of alkenylphenols on recruitment of Ectatomma to fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering that P. sancti-felicis seeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers of P. sancti-felicis and suggests that other non-myrmecochorous, vertebrate-dispersed plants may similarly benefit from the recruitment to fruit by ants.  相似文献   

19.
Species‐specific climate responses within ecological communities may disrupt the synchrony of co‐evolved mutualisms that are based on the shared timing of seasonal events, such as seed dispersal by ants (myrmecochory). The spring phenology of plants and ants coincides with marked changes in temperature, light and moisture. We investigate how these environmental drivers influence both seed release by early and late spring woodland herb species, and initiation of spring foraging by seed‐dispersing ants. We pair experimental herbaceous transplants with artificial ant bait stations across north‐ and south‐facing slopes at two contrasting geographic locations. This use of space enables robust identification of plant fruiting and ant foraging cues, and the use of transplants permits us to assess plasticity in plant phenology. We find that warming temperatures act as the primary phenological cue for plant fruiting and ant foraging. Moreover, the plasticity in plant response across locations, despite transplants being from the same source, suggests a high degree of portability in the seed‐dispersing mutualism. However, we also find evidence for potential climate‐driven facilitative failure that may lead to phenological asynchrony. Specifically, at the location where the early flowering species (Hepatica nobilis) is decreasing in abundance and distribution, we find far fewer seed‐dispersing ants foraging during its fruit set than during that of the later flowering Hexastylis arifolia. Notably, the key seed disperser, Aphaenogaster rudis, fails to emerge during early fruit set at this location. At the second location, A. picea forages equally during early and late seed release. These results indicate that climate‐driven changes might shift species‐specific interactions in a plant–ant mutualism resulting in winners and losers within the myrmecochorous plant guild.  相似文献   

20.
  • Most plants that inhabit ant‐gardens (AGs) are cultivated by the ants. Some orchids occur in AGs; however, it is not known whether their seeds are dispersed by AG ants because most orchid seeds are tiny and dispersed by wind.
  • We performed in situ seed removal experiments, in which we simultaneously provided Azteca gnava ants with seeds of three AG orchid species and three other AG epiphyte species (Bromeliaceae, Cactaceae and Gesneriaceae), as well as the non‐AG orchid Catasetum integerrimum.
  • The seeds most removed were those of the bromeliad Aechmea tillandsioides and the gesneriad Codonanthe uleana, while seeds of AG orchids Coryanthes picturata, Epidendrum flexuosum and Epidendrum pachyrachis were less removed. The non‐AG orchid was not removed. Removal values were positively correlated with the frequency of the AG epiphytes in the AGs, and seeds of AG orchids were larger than those of non‐AG orchids, which should favour myrmecochory.
  • Our data show that Azt. gnava ants discriminate and preferentially remove seeds of the AG epiphytes. We report for the first time the removal of AG orchid seeds by AG ants in Neotropical AGs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号