首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional genomics studies have led to the discovery of a large amount of non-coding RNAs from the human genome; among them are long non-coding RNAs (lncRNAs). Emerging evidence indicates that lncRNAs could have a critical role in the regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. As master gene regulators, lncRNAs are capable of forming lncRNA–protein (ribonucleoprotein) complexes to regulate a large number of genes. For example, lincRNA-RoR suppresses p53 in response to DNA damage through interaction with heterogeneous nuclear ribonucleoprotein I (hnRNP I). The present study demonstrates that hnRNP I can also form a functional ribonucleoprotein complex with lncRNA urothelial carcinoma-associated 1 (UCA1) and increase the UCA1 stability. Of interest, the phosphorylated form of hnRNP I, predominantly in the cytoplasm, is responsible for the interaction with UCA1. Moreover, although hnRNP I enhances the translation of p27 (Kip1) through interaction with the 5′-untranslated region (5′-UTR) of p27 mRNAs, the interaction of UCA1 with hnRNP I suppresses the p27 protein level by competitive inhibition. In support of this finding, UCA1 has an oncogenic role in breast cancer both in vitro and in vivo. Finally, we show a negative correlation between p27 and UCA in the breast tumor cancer tissue microarray. Together, our results suggest an important role of UCA1 in breast cancer.  相似文献   

2.
p27(Kip1R) is an isoform of p27(Kip1), having a distinct C-terminus. The sequences of p27(Kip1R) required for nuclear localization and growth inhibition were determined in HeLa cells using a green fluorescence protein (GFP) as a reporter molecule. Region 153-168 and residues K168 and I169 were determined to play a critical role in the nuclear localization of p27(Kip1R). Aliphatic amino acid was found to be a substitute for the basic residue in the typical nuclear localization signal, while its functional substitution was incomplete, thereby causing a significant cytoplasmic retention of p27(Kip1R). p27(Kip1R) is thus the first example of an atypical bipartite nuclear localization signal with aliphatic amino acid as a functional residue. Despite cytoplasmic retention, p27(Kip1R) inhibited the cell growth as well as p27(Kip1), while GFP alone had no effect. The mutants lacking an N-terminus containing the binding regions for cyclins and cyclin-dependent kinases also showed a significant degree of nuclear localization, but failed to inhibit cell growth. The growth inhibition by p27(Kip1R) as well as p27(Kip1) was thus suggested to originate in the common N-terminal region.  相似文献   

3.
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 has been shown to regulate cellular proliferation via inhibition of CDK activities. It is now recognized that p27Kip1 can regulate cellular processes through non-canonical, CDK-independent mechanisms. We have developed an inducible p27Kip1 model in cultured cells to explore CDK-independent p27Kip1 regulation of biological processes. We present evidence that p27Kip1 can function in a CDK-independent manner to inhibit entry and/or progression of S phase. Even though this p27Kip1 mechanism is non-canonical it does requires the intact cyclin-binding motif in p27Kip1. We suggest a mechanism similar to that proposed in post-mitotic neural cells whereby p27Kip1 functions to coordinate growth arrest and apoptosis. Our hypothesis supports the concept that p27Kip1 is a gatekeeper for the entry and progression of S phase through interaction with specific protein(s) or via binding to specific DNA sequences in a CDK-independent manner.  相似文献   

4.
The cyclin dependent kinase inhibitor p27 plays an important role in controlling the eukaryotic cell cycle by regulating progression through G1 and entry into S phase. It is often elevated during differentiation and under conditions of cellular stress. In contrast, it is commonly downregulated in cancer cells and its levels are generally inversely correlated with favorable prognosis. The cellular levels of p27 are regulated, in part, by translational control mechanisms. The 5′-untranslated region (5′-UTR) of the p27 mRNA harbors an internal ribosome entry site (IRES) which may facilitate synthesis of p27 in certain conditions. In this study, Far Upstream Element (FUSE) Binding Protein 1 (FBP1) was shown to directly bind to the human p27 5′-UTR and to promote IRES activity. An eight-nucleotide element downstream of a U-rich region within the 5′-UTR was important for FBP1 binding and p27 IRES activity. Overexpression of FBP1 enhanced endogenous p27 levels and stimulated translation initiation. In contrast, repression of FBP1 by siRNA transfection downregulated endogenous p27 protein levels. Using rabbit reticulocyte lysates, FBP1 stimulated p27 mRNA translation in vitro. The central domain of FBP1, containing four K homology motifs, was required for p27 5′-UTR RNA binding and the N terminal domain was important for translational activation. These findings indicate that FBP1 is a novel activator of p27 translation upon binding to the 5′-UTR.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin‐dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild‐type (WT) mice: exhibiting higher viral load in lung tissue, faster body‐weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN‐β and several critical antiviral interferon‐stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV‐infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN‐β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.  相似文献   

12.
13.
It is thought that environmental pollutants, such as polycyclic aromatic hydrocarbons (PAH), contribute to human breast tumorigenesis, yet their roles remain incompletely elucidated. The prototypical PAH 7,12-dimethylbenz(alpha)anthracene (DMBA) specifically and effectively induces mammary tumor formation in rodent models. In an attempt to explore the molecular mechanisms by which PAH initiates and promotes mammary tumorigenesis, we examined the expression of several cell cycle regulators in rat mammary tumors induced by DMBA. Expression of cyclin D1, murine double minute-2 (MDM2), and Akt was up-regulated in tumors in comparison to normal mammary glands, as indicated by RT-PCR, Western blot analysis, and immunohistochemical staining. Expression of p27Kip1 protein was also elevated in the tumors with increased cytoplasmic localization. However, RB protein remained hyperphosphorylated. To directly test the effects of DMBA, the MCF-7 human breast cancer cells were treated. DMBA induced MDM2 expression in a dose- and time-dependent fashion in the MCF-7 cells, and this activation appeared to be p53 dependent. These data suggest that activation of cyclin D1, MDM2, and AKT as well as increased expression and cytoplasmic localization of p27Kip1 may play a role in this model of environmental pollutant-induced mammary tumorigenesis.  相似文献   

14.
15.
Dysregulated long noncoding RNAs (lncRNAs) remains to be explored in tumorigenesis. LncRNA HOXC13 antisense RNA (HOXC13-AS) has been found as an oncogene in many cancers; however, the role of HOXC13-AS in breast cancer still elusive. In this study, the HOXC13-AS levels and its role in cell proliferation was first measured by real-time quantitative polymerase chain reaction, Cell Counting Kit-8 assay, and colony formation assay. It showed that HOXC13-AS was increased in breast cancer tissues compared with the adjacent normal tissues and upregulated HOXC13-AS promoted the growth of breast cancer cells. Then, we found that the miR-497-5p levels were downregulated in cancer tissues compared with the adjacent tissues and miR-497-5p suppressed breast cancer cell proliferation. Further study showed that HOXC13-AS could function as a “sponge” for miR-497-5p then suppress miR-497-5p expression. Moreover, we next identified that Phosphatase and Tensin homolog (PTEN) is the target of miR-497-5p. Overexpression of miR-497-5p by chemical mimics decreased the expression of PTEN, while downregulation of miR-497-5p by HOXC13-AS rescued the expression of PTEN. Finally, we showed that HOXC13-AS promoted the proliferation of breast cancer cells and tumor growth through miR-497-5p/PTEN axis in vitro and in vivo. Hence, we conclude that HOXC13-AS, which is significantly upregulated in breast cancers, promoted cell proliferation through the suppressed miR-497-5p and further upregulated PTEN.  相似文献   

16.
Ribosomal protein SA (rpSA), or p40, is a structural element of the small subunit of the eukaryotic ribosome. The N-terminal and central parts of rpSA are homologous to prokaryotic S2, whereas its C-terminal part is specific to eukaryotes. Preparations of 40S ribosomal subunits isolated from full-term human placenta proved to be deficient in SA to a varying extent. To study the rpSA binding to human 40S subunits, recombinant rpSA and its mutant forms with N-and C-terminal deletions were synthesized. The full-size and N-truncated rpSA variants bound to 40S subunits, while deletion of the C-terminal domain completely abolished the binding.  相似文献   

17.
The aim of this study was to comprehensively evaluate via a meta‐analysis the association between p27 expression and clinical outcome in breast cancer patients. We conducted a meta‐analysis of 20 studies (n= 6463 patients) that evaluated the correlation between p27 expression and indicators of breast cancer clinical outcome, including overall survival (OS), disease‐free survival (DFS) and relapse‐free survival (RFS). Data pooling was performed by RevMan 4.2. A total of 60% (9 of 15) of the studies showed a significant association between p27 high expression and OS, whereas 25% (2 of 8) and 60% (3 of 5) studies demonstrated a correlation between p27 high expression and DFS and RFS, respectively. The relative risks (RRs) were 1.34 (1.26–1.42) for OS (P < 0.00001), 1.27 (1.10–1.47) for DFS (P= 0.001) and 1.49 (0.92–2.42) for RFS (P= 0.10). In lymph node‐negative breast cancer patients, the RRs for OS and RFS were 1.84 (1.30–2.59; P= 0.0005) and 1.30 (0.20–8.50; P= 0.78), respectively. In lymph node‐positive breast cancer patients, the RRs for OS and RFS were 2.99 (1.77–5.07; P < 0.0001) and 1.49 (0.80–2.77; P= 0.21), respectively. This meta‐analysis indicates that reduced p27 is an independent prognostic factor for poor overall and disease‐free cancer survival.  相似文献   

18.
19.
The crystal structures of unbound protein L1 and its complexes with ribosomal and messenger RNAs were analyzed. The apparent association rate constants for L1-RNA complexes proved to depend on the conformation of unbound L1. It was suggested that L1 binds to rRNA with a higher affinity than to mRNA, owing to additional interactions between domain II of L1 and the loop rRNA region, which is absent in mRNA. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 650–657. The article was translated by the authors.  相似文献   

20.
为了研究DNA损伤反应中p2 7Kip1的表达及其调控机制 ,应用免疫印迹的实验结果表明 :10Gy 60 Coγ射线照射后 3h ,HeLa细胞中p2 7Kip1蛋白水平开始下降并持续到 2 4h ,进而失去它对CDKs的抑制功能 .Northern印迹结果显示 ,电离辐射 (IR)对p2 7Kip1mRNA表达水平无明显影响 ,说明电离辐射诱导p2 7Kip1表达水平的降低主要与蛋白质降解相关 ,但其具体的调控机制还不清楚 .已知在G1—S期p2 7Kip1蛋白的降低主要依赖细胞周期蛋白E Cdk2激酶将其磷酸化后的泛素化蛋白酶体途径 (ubiquitin proteasomepathway) .酶动力学研究结果揭示 :电离辐射后细胞周期蛋白E Cdk2激酶活性增高 ,12h细胞周期蛋白E Cdk2激酶活性达到最大 .当在照前用细胞周期蛋白E Cdk2抑制剂olomoucine (10 μmol L)抑制细胞周期蛋白E Cdk2激酶活性时 ,p2 7Kip1蛋白表达水平增加 .此外 ,还观察到电离辐射可诱导p2 7Kip1泛素化水平的增高 ,而在使用蛋白酶体抑制剂MG 132 (5 μmol L)处理HeLa细胞后 ,可抑制辐射诱导p2 7Kip1蛋白水平的下调 .研究结果提示 :泛素化蛋白酶体途径参与了辐射诱导P2 7Kip1蛋白表达下调的降解机制 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号