共查询到20条相似文献,搜索用时 0 毫秒
1.
Pubin Qiu Wencong Song Zhiwei Niu Yaofu Bai Wei Li Shaohui Pan Sha Peng Jinlian Hua 《Cell biochemistry and function》2013,31(2):159-165
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
3.
Yuanyuan An Fengtian Liu Ying Chen Qing Yang 《Journal of cellular and molecular medicine》2020,24(1):13-24
Multiple studies have shown that cancer‐associated fibroblasts (CAFs) play an important role in tumour progression, including carcinogenesis, invasion, metastasis and the chemoresistance of cancer cells. Immune cells, including macrophages, natural killer cells, dendritic cells and T cells, play a dual role in the tumour microenvironment. Although increasing research has focused on studying interactions between distinct cells in the tumour microenvironment, the complex relationships between CAFs and immune cells remain unclear and need further study. Here, we summarize our current understanding of crosstalk between CAFs and immune cells, which may help clarify their diagnostic and therapeutic value in tumour progression. 相似文献
4.
Lingyan Wang V. B. Cismasiu Chunxue Bai L. M. Popescu Xiangdong Wang 《Journal of cellular and molecular medicine》2013,17(4):567-577
Telocytes (TCs) are interstitial cells with telopodes – very long prolongations that establish intercellular contacts with various types of cells. Telocytes have been found in many organs and various species and have been characterized ultrastructurally, immunophenotypically and electrophysiologically ( www.telocytes.com ). Telocytes are distributed through organ stroma forming a three‐dimensional network in close contacts with blood vessels, nerve bundles and cells of the local immune system. Moreover, it has been shown that TCs express a broad range of microRNAs, such as pro‐angiogenic and stromal‐specific miRs. In this study, the gene expression profile of murine lung TCs is compared with other differentiated interstitial cells (fibroblasts) and with stromal stem/progenitor cells. More than 2000 and 4000 genes were found up‐ or down‐regulated, respectively, in TCs as compared with either MSCs or fibroblasts. Several components or regulators of the vascular basement membrane are highly expressed in TCs, such as Nidogen, Collagen type IV and Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Given that TCs locate in close vicinity of small vessels and capillaries, the data suggest the implication of TCs in vascular branching. Telocytes express also matrix metalloproteases Mmp3 and Mmp10, and thus could regulate extracellular matrix during vascular branching and de novo vessel formation. In conclusion, our data show that TCs are not fibroblasts, as the ultrastructure, immunocytochemistry and microRNA assay previously indicated. Gene expression profile demonstrates that TCs are functionally distinct interstitial cells with specific roles in cell signalling, tissue remodelling and angiogenesis. 相似文献
5.
Marzieh Lotfi Hojjat Naderi‐Meshkin Elahe Mahdipour Asghar Mafinezhad Roohollah Bagherzadeh Hamid Reza Sadeghnia Habibollah Esmaily Masoud Maleki Halimeh Hasssanzadeh Majid Ghayaour‐Mobarhan Hamid Reza Bidkhori Ahmad Reza Bahrami 《Cell biology international》2019,43(12):1365-1378
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing. 相似文献
6.
7.
Tightly associated with blood vessels in their perivascular niche, human mesenchymal stem cells (MSCs) closely interact with endothelial cells (ECs). MSCs also home to tumours and interact with cancer cells (CCs). Microparticles (MPs) are cell‐derived vesicles released into the extracellular environment along with secreted factors. MPs are capable of intercellular signalling and, as biomolecular shuttles, transfer proteins and RNA from one cell to another. Here, we characterize interactions among ECs, CCs and MSCs via MPs and secreted factors in vitro. MPs and non‐MP secreted factors (Sup) were isolated from serum‐free medium conditioned by human microvascular ECs (HMEC‐1) or by the CC line HT1080. Fluorescently labelled MPs were prepared from cells treated with membrane dyes, and cytosolic GFP‐containing MPs were isolated from cells transduced with CMV‐GFP lentivirus. MSCs were treated with MPs, Sup, or vehicle controls, and analysed for MP uptake, proliferation, migration, activation of intracellular signalling pathways and cytokine release. Fluorescently labelled MPs fused with MSCs, transferring the fluorescent dyes to the MSC surface. GFP was transferred to and retained in MSCs incubated with GFP‐MPs, but not free GFP. Thus, only MP‐associated cellular proteins were taken up and retained by MSCs, suggesting that MP biomolecules, but not secreted factors, are shuttled to MSCs. MP and Sup treatment significantly increased MSC proliferation, migration, and MMP‐1, MMP‐3, CCL‐2/MCP‐1 and IL‐6 secretion compared with vehicle controls. MSCs treated with Sup and MPs also exhibited activated NF‐κB signalling. Taken together, these results suggest that MPs act to regulate MSC functions through several mechanisms. 相似文献
8.
Subramanian A Shu-Uin G Kae-Siang N Gauthaman K Biswas A Choolani M Bongso A Chui-Yee F 《Journal of cellular biochemistry》2012,113(6):1886-1895
Human bone marrow mesenchymal stem cells (hBMMSCs) were shown to transform into tumor-associated fibroblasts (TAFs) when in the vicinity of breast cancer tumors and played an important role in tumor enhancement and metastasis. In early human development MSCs migrating from the yolk sac and aorta-gonad-mesonephros (AGM) via the umbilical cord to the placenta and back to the fetal bone marrow were shown to get trapped in the gelatinous Wharton's jelly of the umbilical cord. The common origin of the Wharton's jelly MSCs and the finally homed hBMMSCs prompted us to evaluate whether hWJSCs are also involved in TAF transformation. hWJSCs and hBMMSCs were grown in the presence of breast and ovarian cancer cell conditioned medium (MDA-TCM, TOV-TCM) for 30 days. No changes were observed in the hWJSCs but the hBMMSCs transformed from short to thin long fibroblasts, their proliferation rates increased and CD marker expression decreased. The transformed hBMMSCs showed positive staining for the tumor-associated markers FSP, VEGF, EGF, and Tn-C. Real-time PCR and multiplex luminex bead analysis showed upregulation of TAF-related genes (FSP, FAP, Tn-C, Tsp-1, EGF, bFGF, IL-6, α-SMA, VEGF, and TGF-β) for hBMMSCs with low expression for hWJSCs. The luciferase assay showed that hWJSCs previously exposed to MDA-TCM or TOV-TCM had no stimulatory growth effect on luciferase-tagged MDA or TOV cells unlike hBMMSCs. The results confirmed that hWJSCs do not transform to the TAF phenotype and may therefore not be associated with enhanced growth of solid tumors making them a safe MSC for cell based therapies. 相似文献
9.
10.
11.
Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues 下载免费PDF全文
Fatemeh Hendijani 《Cell proliferation》2017,50(2)
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits. 相似文献
12.
Masamitsu Konno Atsushi Hamabe Shinichiro Hasegawa Hisataka Ogawa Takahito Fukusumi Shimpei Nishikawa Katsuya Ohta Yoshihiro Kano Miyuki Ozaki Yuko Noguchi Daisuke Sakai Toshihiro Kudoh Koichi Kawamoto Hidetoshi Eguchi Taroh Satoh Masahiro Tanemura Hiroaki Nagano Yuichiro Doki Masaki Mori Hideshi Ishii 《Development, growth & differentiation》2013,55(3):309-318
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. 相似文献
13.
Hyun‐Jung Lee Kyeung Eun Cha Seong‐Gyu Hwang Jin Kyeoung Kim Gi Jin Kim 《Journal of cellular biochemistry》2011,112(1):49-58
Stem cells have unique properties such as self‐renewal, plasticity to generate various cell types, and availability of cells of human origin. The characteristics are attentive in the toxicity screening against chemical toxicants. Placenta‐derived stem cells (PDSCs) have been spotlighted as a new cell source in stem cell research recently because they are characterized by their capacity to differentiate into multilineages. However, the use of PDSCs as an in vitro screening model for potential drug candidates has not yet been studied. Here, we analyzed the potentials for bone‐marrow‐derived mesenchymal stem (BM‐MSCs), which is a representative adult stem cells and PDSCs as an in vitro hepatotoxicity screening system, using well‐known hepatotoxicants. BM‐MSCs and PDSCs were analyzed to the potential for hepatogenic differentiation and were cultured with different concentrations of hepatotoxicants for time courses. The viability and ATP‐binding cassette (ABC) transporters were measured by the MTT assay and RT‐PCR, respectively. The sensitivities of PDSCs to hepatotoxicants are more sensitive than those of BM‐MSCs. The viability (IC50) to in PDSCs was less than that of BM‐MSCs after 48 and 72 h (P < 0.05) of CCl4 exposure. The toxicities of CCl4 were decreased by fourfold in hepatogenic differentiation inducing PDSCs compared to the undifferentiated cells. The alteration of ABCGs was observed in PDSCs during differentiation. These findings suggest that the naïve PDSCs expressing ABCGs can be used as a source for in vitro screening system as well as the expression patterns of ABCG1 and ABCG2 might be involved in the sensitivity of PDSCs to hepatotoxicants. J. Cell. Biochem. 112: 49–58, 2011. © 2010 Wiley‐Liss, Inc. 相似文献
14.
Jei‐Wen Chang Hsin‐Lin Tsai Chang‐Wei Chen Hui‐Wen Yang An‐Hang Yang Ling‐Yu Yang Paulus S. Wang Yee‐Yung Ng Teng‐Lung Lin Oscar K. Lee 《Journal of cellular and molecular medicine》2012,16(12):2935-2949
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD. 相似文献
15.
Zohreh Bolandi Seyed Mohammad Ali Hosseini Rad Sara Soudi Seyed Mahmoud Hashemi Hossein Ghanbarian 《Journal of cellular biochemistry》2019,120(2):1726-1734
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a wide range of cell types and provide a potential to transfer therapeutic protein in vivo, making them valuable candidates for gene therapy and cell therapy. However, using MSCs in in vivo is limited due to the low rate of transfection and transduction efficacy. Therefore, developing methods to efficiently transfer genes into MSCs would provide a number of opportunities for using them in the clinic. Here, we introduce a simple and robust method for efficient transduction of human adipose-derived MSCs by modification under the culture condition of human embryonic kidney cells 293 (HEK293T) and MSCs. Moreover, as a transduction enhancer, polybrene was replaced with Lipofectamine, a cationic lipid. Therefore, we showed that transduction of primary cells can be increased efficiently by modifying the culture condition. 相似文献
16.
Secreted microvesicular miR‐31 inhibits osteogenic differentiation of mesenchymal stem cells 下载免费PDF全文
Sylvia Weilner Elisabeth Schraml Matthias Wieser Paul Messner Karl Schneider Klemens Wassermann Lucia Micutkova Klaus Fortschegger Andrea B. Maier Rudi Westendorp Heinrich Resch Susanne Wolbank Heinz Redl Pidder Jansen‐Dürr Peter Pietschmann Regina Grillari‐Voglauer Johannes Grillari 《Aging cell》2016,15(4):744-754
Damage to cells and tissues is one of the driving forces of aging and age‐related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self‐renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor‐age‐dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR‐31 as a crucial component. We demonstrated that miR‐31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR‐31 is secreted within senescent cell‐derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled‐3. Therefore, we suggest that microvesicular miR‐31 in the plasma of elderly might play a role in the pathogenesis of age‐related impaired bone formation and that miR‐31 might be a valuable plasma‐based biomarker for aging and for a systemic environment that does not favor cell‐based therapies whenever osteogenesis is a limiting factor. 相似文献
17.
18.
19.
Jianping Liu Yalan Zhang Lu Bai Xiangrong Cui Jing Zhu 《Cell biochemistry and function》2012,30(8):650-656
Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and tissue engineering as well as being potential carriers for tumour therapy. However, the safety of using MSCs in tumours is unknown. Herein, we analyse malignant transformation of MSCs in the tumour microenvironment. Rat bone marrow MSCs were cultured with malignant rat glioma C6 cells without direct cell–cell contact. After 7 days, the cells were assessed for transformation using flow cytometry, real‐time quantitative PCR, immunofluorescence and chromosomal analysis. In addition, wild‐type (WT) p53, mutant p53 and mdm2 was determined using Western blotting. Almost all MSCs became phenotypically malignant cells, with significantly decreased WT p53 expression and increased expression of mutant p53 and mdm2, along with an aneuploid karyotype. To evaluate tumorigenesis in vivo, the MSCs indirect co‐cultured with C6 cells for 7 days were transplanted subcutaneously into immuno‐deficient mice. The cells developed into a large tumour at the injection site within 8 weeks, with systemic symptoms including cachexia and scoliosis. Pathological and cytological analysis revealed poorly differentiated pleomorphic cells with a dense vascular network and aggressive invasion into the adjacent muscle. These data demonstrate that MSCs became malignant cancer cells when exposed to the tumour microenvironment and suggest that factors released from the cancer cells have a critical role in the malignant transformation of MSCs. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献