首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Stem cells have unique properties such as self‐renewal, plasticity to generate various cell types, and availability of cells of human origin. The characteristics are attentive in the toxicity screening against chemical toxicants. Placenta‐derived stem cells (PDSCs) have been spotlighted as a new cell source in stem cell research recently because they are characterized by their capacity to differentiate into multilineages. However, the use of PDSCs as an in vitro screening model for potential drug candidates has not yet been studied. Here, we analyzed the potentials for bone‐marrow‐derived mesenchymal stem (BM‐MSCs), which is a representative adult stem cells and PDSCs as an in vitro hepatotoxicity screening system, using well‐known hepatotoxicants. BM‐MSCs and PDSCs were analyzed to the potential for hepatogenic differentiation and were cultured with different concentrations of hepatotoxicants for time courses. The viability and ATP‐binding cassette (ABC) transporters were measured by the MTT assay and RT‐PCR, respectively. The sensitivities of PDSCs to hepatotoxicants are more sensitive than those of BM‐MSCs. The viability (IC50) to in PDSCs was less than that of BM‐MSCs after 48 and 72 h (P < 0.05) of CCl4 exposure. The toxicities of CCl4 were decreased by fourfold in hepatogenic differentiation inducing PDSCs compared to the undifferentiated cells. The alteration of ABCGs was observed in PDSCs during differentiation. These findings suggest that the naïve PDSCs expressing ABCGs can be used as a source for in vitro screening system as well as the expression patterns of ABCG1 and ABCG2 might be involved in the sensitivity of PDSCs to hepatotoxicants. J. Cell. Biochem. 112: 49–58, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
Mesenchymal stem cell‐based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta‐derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation‐induced murine limb ischemia model was generated with fluorescent dye (CM‐DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia‐induced injury to mouse hind limbs by enhancement of angiogenesis.  相似文献   

7.
In the present study, we successfully isolated PDMSCs from human placental tissues. The RT-PCR results show that PDMSCs preserved the genetic characteristics of the primitive embryonic stage--Oct-4 and Nanog. By using serum-free medium supplemented essential growth factors and induction medium culture for 4 weeks, a monolayer of spindle-like PDMSCs gradually formed 3D spheroid bodies (SB-PDMSCs). By using real-time RT-PCR, early mRNA expressions of Pdx1, as well as the Sox17 and Foxa2 genes, were observed to be significantly activated in SB-PDMSCs, followed by the expression of mature pancreas-related genes (insulin, glucagon, and somatostatin). The high insulin content of SB-PDMSCs was further confirmed by ELISA assay, and the glucose dependency was demonstrated by the corresponding insulin secretion level. In a transplantation study of streptozotocin-pretreated nude mice, the restoration of normoglycemia in the SB-PDMSC treated group was further observed. In conclusion, these results indicate that PDMSCs are an excellent source for the induced differentiation of well-functioning insulin-positive cells. The potential of these insulin producing cells derived from PDMSCs was also demonstrated functionally by the demonstration of secreted insulin in vitro and effective control of blood glucose levels in vivo.  相似文献   

8.
9.
10.
11.
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

13.
14.
The recent identification of a mesenchymal stem cell population in adipose tissue has led to an abundance of research focused on the regenerative properties of these cells. As such, adipose‐derived stem cells (ASCs) and potential therapies in craniofacial regeneration have been widely studied. This review will discuss the identification and potential of ASCs, and specifically, preclinical and clinical studies using ASCs in craniofacial repair. Studies involving ASCs in the repair of defects caused by craniosynostosis and Treacher Collins syndrome will be discussed. A comprehensive review of the literature will be presented, focusing on fat grafting and biomaterials‐based approaches that include ASCs for craniofacial regeneration. (Part C) 96:95–97, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   

17.
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery.  相似文献   

18.
19.
A number of recent studies have examined the ability of stem cells derived from different sources to differentiate into dopamine‐producing cells and ameliorate behavioural deficits in Parkinsonian models. Recently, using the approach of cell reprogramming by small cell‐permeable biological active compounds that involved in the regulation of chromatin structure and function, and interfere with specific cell signalling pathways that promote neural differentiation we have been able to generate neural‐like cells from human bone marrow (BM)‐derived MSCs (hMSCs). Neurally induced hMSCs (NI‐hMSCs) exhibited several neural properties and exerted beneficial therapeutic effect on tissue preservation and locomotor recovery in spinal cord injured rats. In this study, we aimed to determine whether hMSCs neuralized by this approach can generate dopaminergic (DA) neurons. Immunocytochemisty studies showed that approximately 50–60% of NI‐hMSCs expressed early and late dopaminergic marker such as Nurr‐1 and TH that was confirmed by Western blot. ELISA studies showed that NI‐hMSCs also secreted neurotrophins and dopamine. Hypoxia preconditioning prior to neural induction increased hMSCs proliferation, viability, expression TH and the secretion level of dopamine induced by ATP. Taken together, these studies demonstrated that hMSCs neurally modified by this original approach can be differentiated towards DA‐like neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号