首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Understanding how heterogeneous landscapes shape genetic structure not only sheds light on processes involved in population divergence and speciation, but can also guide management strategies to promote and maintain genetic connectivity of populations of endangered species. This study aimed to (1) identify barriers and corridors for gene flow among populations of the endangered frog, Atelopus varius and (2) assess the relative contributions of alternative landscape factors to patterns of genetic variation among these populations in a hypothesis testing framework. Location This study took place in western Panama and included all nine of the remaining known populations of A. varius at the time of study. Methods The influence of landscape variables on gene flow among populations was examined by testing for correlations between alternative landscape‐resistance scenarios and genetic distance. Fifteen alternative hypotheses about the influence of (1) riparian habitat corridors, (2) steep slopes, and (3) climatic suitability on patterns of genetic structure were tested in a causal modelling framework, using Mantel and partial‐Mantel tests, along with an analysis of molecular variation. Results Only the hypothesis attributing resistance to dispersal across steep slopes (genetic isolation by slope distance) was fully supported by the causal modelling approach. However, the analysis of molecular variance and the paths of least‐slope among populations suggest that riparian habitat connectivity may influence genetic structure as well. Main conclusions These results suggest that patterns of genetic variation among A. varius populations are affected by the slope of the landscape such that areas with steep slopes act as barriers to gene flow. In contrast, areas of low slope, such as streams and mountain ridges, appear to be important corridors for gene flow, especially among high elevation populations. These results engender important considerations for the management of this critically endangered species.  相似文献   

2.
Genetic connectivity is expected to be lower in species with limited dispersal ability and a high degree of habitat specialization (intrinsic factors). Also, gene flow is predicted to be limited by habitat conditions such as physical barriers and geographic distance (extrinsic factors). We investigated the effects of distance, intervening pools, and rapids on gene flow in a species, the Tuxedo Darter (Etheostoma lemniscatum), a habitat specialist that is presumed to be dispersal‐limited. We predicted that the interplay between these intrinsic and extrinsic factors would limit dispersal and lead to genetic structure even at the small spatial scale of the species range (a 38.6 km river reach). The simple linear distribution of E. lemniscatum allowed for an ideal test of how these factors acted on gene flow and allowed us to test expectations (e.g., isolation‐by‐distance) of linearly distributed species. Using 20 microsatellites from 163 individuals collected from 18 habitat patches, we observed low levels of genetic structure that were related to geographic distance and rapids, though these factors were not barriers to gene flow. Pools separating habitat patches did not contribute to any observed genetic structure. Overall, E. lemniscatum maintains gene flow across its range and is comprised of a single population. Due to the linear distribution of the species, a stepping‐stone model of dispersal best explains the maintenance of gene flow across its small range. In general, our observation of higher‐than‐expected connectivity likely stems from an adaptation to disperse due to temporally unstable and patchy habitat.  相似文献   

3.
Habitat fragmentation can have a range of negative demographic and genetic impacts on disturbed populations. Dispersal barriers can be created, reducing gene flow and increasing population differentiation and inbreeding in isolated habitat remnants. Aggregated retention is a form of forestry that retains patches of forests as isolated island or connected edge patches, with the aim of ‘lifeboating’ species and processes, retaining structural features and improving connectivity. Swamp rats (Rattus lutreolus) are a cover‐dependent species that are sensitive to habitat removal. We examined the effects of aggregated retention forestry and forestry roads in native wet Eucalyptus forests on swamp rat gene flow and population genetic structure. We characterized neighbourhood size in unlogged forest to provide a natural state for comparison, and examined population structure at a range of spatial scales, which provided context for our findings. Tests of pairwise relatedness indicated significant differentiation between island and edge populations in aggregated retention sites, and across roads in unlogged sites. Spatial autocorrelation suggested a neighbourhood size of 42–55 m and revealed male‐biased dispersal. We found no genetic isolation by geographical distance at larger (>2.3 km) scales and populations were all significantly differentiated. Our results suggest that removal of mature forest creates barriers for swamp rat dispersal. In particular, roads may have long‐term impacts, while harvesting of native forests is likely to create only short‐term dispersal barriers at the local scale, depending on the rate of regeneration.  相似文献   

4.
5.
6.
Most revegetation conducted for biodiversity conservation aims to mimic reference ecosystems present predisturbance. However, revegetation can overshoot or undershoot targets, particularly in the early stages of a recovery process, resulting in conditions different from the reference model. Revegetation that has, as yet, failed to fully meet revegetation targets may, nonetheless, provide habitat for threatened species not present in reference ecosystems. To investigate this possibility, we surveyed Quokka (Setonix brachyurus), a threatened macropod, in a mining landscape in south‐western Australia. We established four sites in each of riparian forest, which is the preferred habitat of quokkas but is not mined, mid‐slope forest, which is the premining reference ecosystem but is not suitable habitat for quokkas, and revegetated forest on mine pits 16–21 years postmining. We recorded quokkas in all riparian forest sites and two revegetated forest sites but not in any mid‐slope forest sites. Occupied revegetated sites had greater cover between 0 and 2 m and were spatially closer to riparian forest than unoccupied revegetated sites, suggesting predation pressure was likely influencing which mine pits were occupied. Our study demonstrated postmining revegetation can provide new habitat for a threatened species and suggested that revegetating a small proportion of sites to provide new habitat for threatened species could be considered as a management option in some scenarios. This could improve landscape connectivity and increase both the area of available habitat and between‐site heterogeneity, which could all potentially increase the ability of revegetation to conserve biodiversity.  相似文献   

7.
Aim Long‐term climatic variation has generated historical expansions and contractions of species ranges, with accompanying fragmentation and population bottlenecks, which are evidenced by spatial variation in genetic structure of populations. We examine here hypotheses concerning dispersal and vicariance in response to historical geoclimatic change and potential isolation produced by mountains and water barriers. Location The temperate rain forest of southern South America, which is distributed from coastal Chile, including the large continental island of Chiloé, across the Andes into Argentina. Methods We investigated our hypotheses in the phylogenetically and biogeographically relictual marsupial Dromiciops gliroides. We examined 56 specimens, which resulted from field samples and museum study skins from 21 localities. We evaluated the influence of two major barriers, the Andean cordillera and the waterway between the mainland and the large island of Chiloé, by performing Bayesian and maximum‐likelihood phylogenetic analyses on sequences of 877 base pairs of mitochondrial DNA. We further tested the contribution of the proposed geographical barriers using analysis of molecular variance (amova ). We also evaluated the responses of populations to historical north–south shifts of habitat associated with glacial history and sea‐level change. Results Our analyses revealed a phylogeny with three clades, two of which are widespread and contain nearly all the haplotypes: a northern clade (36–39° S) and a southern clade (40–43° S). These two clades contain forms from both sides of the Andes. Within the southern clade, island and mainland forms were not significantly differentiated. Tests of recent demographic change revealed that southern populations have experienced recent expansion, whereas northern populations exhibit long‐term stability. The direction of recent gene flow and range expansion is predominantly from Chile to Argentina, with a modest reciprocal exchange across the Andes. Recent gene flow from the island of Chiloé to the mainland is also supported. Main conclusions The genetic structure of contemporary D. gliroides populations suggests recent gene flow across the Andes and between the mainland and the island of Chiloé. Differences in demographic history that we detected between northern and southern populations have resulted from historical southward shifts of habitat associated with glacial recession in South America. Our results add to a growing literature that demonstrates the value of genetic data to illuminate how environmental history shapes species range and population structure.  相似文献   

8.
Human‐induced transformations of ecosystems usually result in fragmented populations subject to increased extinction risk. Fragmentation is also often associated with novel environmental heterogeneity, which in combination with restricted gene flow may increase the opportunity for local adaptation. To manage at‐risk populations in these landscapes, it is important to understand how gene flow is changing, and how populations respond to habitat loss. We conducted a landscape genomics analysis using Restriction‐site Associated DNA sequencing to investigate the evolutionary response of the critically endangered Dahl's Toad‐headed turtle (Mesoclemmys dahli) to severe habitat modification. The species has lost almost all of its natural habitat in the southwestern part of its range and about 70% in the northeast. Based on least cost path analysis across different resistance surfaces for 3,211 SNPs, we found that the landscape matrix is restricting gene flow, causing the fragmentation of the species into at least six populations. Genome scans and allele‐environment association analyses indicate that the population fragments in the deforested grasslands of the southwest are adaptively different from those in the more forested northeast. Populations in areas with no forest had low levels of adaptive genetic diversity and the fixation of ancestrally‐polymorphic SNPs, consistent with directional selection in this novel environment. Our results suggest that this forest‐stream specialist is adapting to pond‐grassland conditions, but it is also suffering from negative consequences of habitat loss, including genetic erosion, isolation, small effective population sizes, and inbreeding. We recommend gene flow restoration via genetic rescue to counteract these threats, and provide guidance for this strategy.  相似文献   

9.
Species distributions are influenced by variation in environmental conditions across many scales. Knowledge of fine‐scale habitat requirements is important for predicting species occurrence and identifying suitable habitat for target species. Here we investigate the perplexing distribution of a riparian habitat specialist, the western subspecies of the purple‐crowned fairy‐wren (Malurus coronatus coronatus), in relation to fine‐scale habitat associations and patterns of riparian degradation. Surveys of vegetation attributes, river structure and disturbance indicators that are likely to be causal determinants of the species occurrence were undertaken at 635 sites across 14 catchments. Generalized Linear Mixed Modelling demonstrated that the probability of purple‐crowned fairy‐wren occurrence increased with Pandanus aquaticus crown cover, shrub density and height of emergent trees, while riparian structure and signs of cattle were indirect predictors of occurrence. As our study area predominantly contained Pandanus type habitat, we failed to identify river grass as an important component of habitat. Predictions from a cross‐validated model of purple‐crowned fairy‐wren occurrence suggested distribution is constrained by three factors: (i) low quality of local habitat within catchments where the species occurs; (ii) broad‐scale reduction in habitat quality that has resulted in extinction of the species from parts of its range; and (iii) unmeasured variables that limit the exploitation of suitable habitat. The reliance of the species on dense shrubby understorey suggests conservation efforts should aim to maintain the complexity of understorey structure by managing fire and grazing intensity. Efforts to halt the continuing decline of riparian condition and maintain connectivity between areas of quality habitat will help to ensure persistence of riparian habitat specialists in northern Australia.  相似文献   

10.
Abstract Many natural populations in areas of continuous habitat exhibit some form of local genetic structure. Anthropogenic habitat fragmentation can also strongly influence the dynamics of gene flow between populations. We used eight microsatellite markers to investigate the population genetic structure of an abundant forest species, the Australian bush rat (Rattus fuscipes), in the subtropical forests of south‐east Queensland. Five sites were sampled, allowing pairwise comparisons within continuous habitat and across clearings. Weak, but significant population differentiation and a significant pattern of isolation by distance was detected over the small scale (<10 km) of this study. Fine‐scale analysis at a single site (<1 km) showed a significant correlation between individual female genetic distance and geographical distance, but no similar pattern among male individuals. There was no evidence of increased population differentiation across clearings relative to comparisons within continuous forest. This was attributed to dispersal within corridors of remnant and revegetated habitat between the forested areas. We concluded that an inherently restricted dispersal ability, female philopatry and natural habitat heterogeneity play an important part in the development of genetic structure among populations of R. fuscipes. It is important to understand the relationship between landscape features and the pattern of gene flow among continuous populations, as this allows us to predict the impact of fragmentation on natural populations.  相似文献   

11.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

12.
Phylogeographical studies have shown that some shallow‐water marine organisms, such as certain coral reef fishes, lack spatial population structure at oceanic scales, despite vast distances of pelagic habitat between reefs and other dispersal barriers. However, whether these dispersive widespread taxa constitute long‐term panmictic populations across their species ranges remains unknown. Conventional phylogeographical inferences frequently fail to distinguish between long‐term panmixia and metapopulations connected by gene flow. Moreover, marine organisms have notoriously large effective population sizes that confound population structure detection. Therefore, at what spatial scale marine populations experience independent evolutionary trajectories and ultimately species divergence is still unclear. Here, we present a phylogeographical study of a cosmopolitan Indo‐Pacific coral reef fish Naso hexacanthus and its sister species Naso caesius, using two mtDNA and two nDNA markers. The purpose of this study was two‐fold: first, to test for broad‐scale panmixia in N. hexacanthus by fitting the data to various phylogeographical models within a Bayesian statistical framework, and second, to explore patterns of genetic divergence between the two broadly sympatric species. We report that N. hexacanthus shows little population structure across the Indo‐Pacific and a range‐wide, long‐term panmictic population model best fit the data. Hence, this species presently comprises a single evolutionary unit across much of the tropical Indian and Pacific Oceans. Naso hexacanthus and N. caesius were not reciprocally monophyletic in the mtDNA markers but showed varying degrees of population level divergence in the two nuclear introns. Overall, patterns are consistent with secondary introgression following a period of isolation, which may be attributed to oceanographic conditions of the mid to late Pleistocene, when these two species appear to have diverged.  相似文献   

13.
We analyzed the spatial distributions of two congeneric tree species, Neolistea aciculata and Neolistea sericea (Lauraceae), in a warm‐temperate forest on Miyajima Island, south‐western Japan. Both species were mainly found in valley sites on the island. Hence, these species shared the same topographic habitat niche. However, we found a clear difference between the spatial distributions of the two species in relation to the light environment. Neolistea aciculata was predominantly found in stands with low light, such as beneath the canopy of dense evergreen broadleaved forest. In contrast, N. sericea was predominantly associated with ample light, such as in secondary Pinus densiflora forest. In stands with moderate light conditions, both species were found. This habitat niche segregation in relation to light conditions presumably allows the coexistence of these two species in the predominantly successional forest on Miyajima Island.  相似文献   

14.
Reciprocal transplant experiments were completed to test for selection against the mixing of behavioural phenotypes in a desert spider. Most Agelenopsis aperta populations experience low prey abundances and competition for web‐sites that provide shelter from thermal extremes. These conditions favour aggressiveness towards both prey and conspecifics (an ‘arid‐land behavioural phenotype’). The spider also occupies narrow stretches of riparian habitat bordering spring‐fed streams and rivers. Here it is released from competition for prey and foraging sites, but is subject to predation by birds. A less aggressive/more fearful behaviour is selected for in these riparian habitats (a ‘riparian behavioural phenotype’). Previous work with this spider indicates that there is genetic differentiation between arid‐land and riparian populations. However, the degree to which genetic differentiation is achieved may be limited by gene flow. Reciprocal sets of enclosures were established in: (1) a dry evergreen woodland site (arid‐land phenotype) and (2) a neighbouring riparian site (riparian phenotype) in south‐eastern Arizona. Equal numbers of field collected, early instar A. aperta were introduced into native and transplant enclosures in each habitat. After 6 months of site‐imposed selection, survivorship was determined and growth estimates and behavioural trials completed on spiders remaining in the different enclosures. The same behavioural test was subsequently applied to lab‐reared offspring of the spiders surviving the respective selection regimes. Riparian transplants showed both poor survival and retarded growth in the dry woodland habitat when compared with both arid‐land and riparian natives. Arid‐land transplants that survived, however, grew equally well in riparian habitat as did dry woodland and riparian natives. Behavioural assays conducted on test subjects after selection and on their offspring reared in a controlled laboratory environment indicate that phenotypes that were inappropriate to the respective habitats were selected against in the transplant experiments. The frequency distribution of transplant spider behaviour on a continuum from fearful to aggressive was intermediate between that exhibited by respective native riparian and dry woodland spiders. It is concluded that while arid‐land and riparian behavioural ecotypes do exist, directional gene flow of arid‐land phenotypes into riparian habitat limits population subdivision.  相似文献   

15.
Anthropogenic habitat fragmentation often restricts gene flow and results in small populations that are at risk of inbreeding. However, some endangered species naturally occupy patchy habitat where local population extinction and recolonization are normal. We investigated population fragmentation in the range‐restricted New Zealand small‐scaled skink (Oligosoma microlepis), documenting changes in habitat occupancy and analyzing mitochondrial, microsatellite, and morphological variation sampled across the geographical range of the species (approximately 100 km2). Small‐scaled skinks have a strong preference for rocky outcrops that exist in a mosaic of other habitat types. A metapopulation structure was indicated by both local extinction and colonization of new sites. We found relatively high mtDNA nucleotide site diversity within this narrow range (π = 0.004; 16S), evidence of inter‐patch gene flow, and no statistical support for inbreeding. Gene flow was limited by geographical distance, although the existence of pasture between habitat patches apparently has not prevented skink dispersal. Generalized linear models indicated an association between body size and location suggesting a local environmental influence on phenotype. Prior to human‐induced habitat modification, native forest probably separated preferred sites and, less than 2000 years ago, volcanic activity devastated much of the area currently occupied by O. microlepis. This skink appears able to re‐establish populations if other human‐linked factors such as agricultural intensification and introduced predators are limited. Although in contrast to expectations for a scarce and localized species living in a highly modified landscape, this lizard may have previously adapted to a dynamic, mosaic environment mediated by volcanism.  相似文献   

16.
Studies were conducted at the La Selva Biological Station in Costa Rica and in a greenhouse in California to determine the factors accounting for the nonrandom distribution of the riparian fig tree Ficus insipida Willd. along streams in the La Selva Biological Reserve and adjacent deforested lands. We also evaluated the potential seed dispersers of this tree relative to the role of the fruit‐eating fish Brycon guatemalensis that previously was proposed to be an important disperser of F. insipida seeds in this system. At La Selva, we recorded the fig‐foraging activities of vertebrates at fruiting F. insipida trees, surveyed for the presence or absence of F. insipida along streams of different sizes, and determined the fate of fig seedlings transplanted in different riparian habitats. In the greenhouse, we measured seed germination and seedling survival and growth under different light and soil pH conditions mimicking natural conditions. The findings provided evidence that (1) the tree occurs along the larger streams running through forest habitat and only along smaller streams with relatively high light availability; (2) bats (Artibeus spp.) and fish are the major dispersers of F. insipida seeds; (3) the seedlings are subject to mortality not only from low light conditions but also from treefalls, frequent flooding, and bank erosion; and (4) high light levels and near neutral soil pH result in relatively better seed germination, faster growth, and higher survival rates of seedlings. Overall, our results suggest that this fig tree is dispersed mainly by bats and fish and is more establishment‐limited than disperser‐limited in its local distribution in the La Selva rain forest habitat.  相似文献   

17.
Habitat fragmentation may reduce gene flow and population viability of rare species. We tested whether riparian corridors enhanced gene flow and if human habitat modification between riparian corridors subsequently reduced dispersal and gene flow of a wetland butterfly, the US federally endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci). We surveyed nine populations throughout the taxon’s range using five polymorphic microsatellite loci. We found that genetic diversity of N. m. francisci was relatively high despite its restricted distribution, and that there is little evidence of population bottlenecks or extensive inbreeding within populations. We found substantial gene flow and detectable first generation migration, suggesting that N. m. francisci is unlikely to be currently endangered by genetic factors. Pairwise population differentiation and clustering indicate some structuring between populations on different drainages and suggest that dispersal probably occurs mainly via a stepping stone from the closest riparian corridors. However, genetic differentiation between geographically close populations suggests that isolation by distance is not solely responsible for population structure, and that management actions should be targeted at maintaining connectivity of riparian and upland habitats.  相似文献   

18.
Conversion of formerly continuous native habitats into highly fragmented landscapes can lead to numerous negative demographic and genetic impacts on native taxa that ultimately reduce population viability. In response to concerns over biodiversity loss, numerous investigators have proposed that traits such as body size and ecological specialization influence the sensitivity of species to habitat fragmentation. In this study, we examined how differences in body size and ecological specialization of two rodents (eastern chipmunk; Tamias striatus and white‐footed mouse; Peromyscus leucopus) impact their genetic connectivity within the highly fragmented landscape of the Upper Wabash River Basin (UWB), Indiana, and evaluated whether landscape configuration and complexity influenced patterns of genetic structure similarly between these two species. The more specialized chipmunk exhibited dramatically more genetic structure across the UWB than white‐footed mice, with genetic differentiation being correlated with geographic distance, configuration of intervening habitats, and complexity of forested habitats within sampling sites. In contrast, the generalist white‐footed mouse resembled a panmictic population across the UWB, and no landscape factors were found to influence gene flow. Despite the extensive previous work in abundance and occupancy within the UWB, no landscape factor that influenced occupancy or abundance was correlated with genetic differentiation in either species. The difference in predictors of occupancy, abundance, and gene flow suggests that species‐specific responses to fragmentation are scale dependent.  相似文献   

19.
A hybrid zone along an environmental gradient should contain a clinal pattern of genetic and phenotypic variation. This occurs because divergent selection in the two parental habitats is typically strong enough to overcome the homogenizing effects of gene flow across the environmental transition. We studied hybridization between two parapatric tree squirrels (Tamiasciurus spp.) across a forest gradient over which the two species vary in coloration, cranial morphology and body size. We sampled 397 individuals at 29 locations across a 600‐km transect to seek genetic evidence for hybridization; upon confirming hybridization, we examined levels of genetic admixture in relation to maintenance of phenotypic divergence despite potentially homogenizing gene flow. Applying population assignment analyses to microsatellite data, we found that Tamiasciurus douglasii and T. hudsonicus form two distinct genetic clusters but also hybridize, mostly within transitional forest habitat. Overall, based on this nuclear analysis, 48% of the specimens were characterized as T. douglasii, 9% as hybrids and 43% as T. hudsonicus. Hybrids appeared to be reproductively viable, as evidenced by the presence of later‐generation hybrid genotypes. Observed clines in ecologically important phenotypic traits—fur coloration and cranial morphology—were sharper than the cline of putatively neutral mtDNA, which suggests that divergent selection may maintain phenotypic distinctiveness. The relatively recent divergence of these two species (probably late Pleistocene), apparent lack of prezygotic isolating mechanisms and geographic coincidence of cline centres for both genetic and phenotypic variation suggest that environmental factors play a large role in maintaining the distinctiveness of these two species across the hybrid zone.  相似文献   

20.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号