首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aspergillus parasiticus was grown in a modified Lab-Lemco tryptone broth both as a single culture and in association with Lactococcus lactis. Total aflatoxin (B1 + G1) production was higher in the mixed cultures. This stimulation persisted when different batches of media, inoculation procedures and makes of ingredients were used. Aflatoxin yields increased in media with an initial pH of 4.2 compared with a pH close to neutrality. Hydrochloric and/or lactic acid had little effect. The substitution of half the carbon content of the medium by lactate resulted in stimulation or reduction on aflatoxin production when the initial pH was 4.2 or 6.8, respectively.  相似文献   

2.
L uchese , R.H. & H arrigan , W.F. 1990. Growth of, and aflatoxin production by Aspergillus parasiticus when in the presence of either Lactococcus lactis or lactic acid and at different initial pH values. Journal of Applied Bacteriology 69 , 512–519.
Aspergillus parasiticus was grown in a modified Lab-Lemco tryptone broth both as a single culture and in association with Lactococcus lactis . Total aflatoxin (B1 + G1) production was higher in the mixed cultures. This stimulation persisted when different batches of media, inoculation procedures and makes of ingredients were used. Aflatoxin yields increased in media with an initial pH of 4.2 compared with a pH close to neutrality. Hydrochloric and/or lactic acid had little effect. The substitution of half the carbon content of the medium by lactate resulted in stimulation or reduction on aflatoxin production when the initial pH was 4.2 or 6.8, respectively.  相似文献   

3.
4.
The inoculation of Aspergillus flavus spores into a culture of Streptococcus lactis in Lablemco tryptone broth medium resulted in little or no aflatoxin accumulation even though the growth of the fungus was not hindered. The drop in pH and reduced nutrient levels in the medium as a result of the S. lactis growth were not the cause of the observed inhibition. The inhibition was not eliminated by the addition of carbohydrate equal to the amount used by the bacterium before the inoculation with the fungus. Aflatoxin levels were also markedly reduced when S. lactis was inoculated into a growing A. flavus culture. In addition to inhibiting the synthesis of aflatoxin, S. lactis also degraded preformed toxin. A. flavus, on the other hand, not only reduced the growth of S. lactis but also affected the morphology of the bacterial cell; the cells became elongated and formed long chains. S. lactis produced and excreted the inhibitor into the medium late in its growth phase. The inhibitor was a heat-stable low-molecular-weight compound. Chloroform extracts of A. flavus grown in the presence of S. lactis were toxic to Bacillus megaterium but did not exhibit mutagenic or carcinogenic activity in the Salmonella/mammalian microsome mutagenicity test.  相似文献   

5.
The influence of six food preservatives on control of aflatoxin production by Aspergillus parasiticus was tested in SMKY and defined media at three concentrations, viz., 0.1, 0.5 and 1.0%. Propionic acid completely inhibited the yield of mycelia and sclerotia, and aflatoxin production in culture medium, mycelia and sclerotia of A. parasiticus at all concentrations, whereas citric acid showed inhibition only at 0.5 and 1.0% concentrations. Sodium metabisulphite did not permit mycelial growth and aflatoxin biosynthesis in SMKY liquid medium but allowed production of sclerotia and aflatoxin on solid media, while the rest of the food preservatives had only marginal inhibitory effects.  相似文献   

6.
The inoculation of Aspergillus flavus spores into a culture of Streptococcus lactis in Lablemco tryptone broth medium resulted in little or no aflatoxin accumulation even though the growth of the fungus was not hindered. The drop in pH and reduced nutrient levels in the medium as a result of the S. lactis growth were not the cause of the observed inhibition. The inhibition was not eliminated by the addition of carbohydrate equal to the amount used by the bacterium before the inoculation with the fungus. Aflatoxin levels were also markedly reduced when S. lactis was inoculated into a growing A. flavus culture. In addition to inhibiting the synthesis of aflatoxin, S. lactis also degraded preformed toxin. A. flavus, on the other hand, not only reduced the growth of S. lactis but also affected the morphology of the bacterial cell; the cells became elongated and formed long chains. S. lactis produced and excreted the inhibitor into the medium late in its growth phase. The inhibitor was a heat-stable low-molecular-weight compound. Chloroform extracts of A. flavus grown in the presence of S. lactis were toxic to Bacillus megaterium but did not exhibit mutagenic or carcinogenic activity in the Salmonella/mammalian microsome mutagenicity test.  相似文献   

7.
8.
At 5 M, miconazole prevented the growth of Aspergillus parasiticus Speare in a number of media. Sensitivity to miconazole was increased approximately 10-fold in a medium containing glycerol. At sub-inhibitory concentrations, miconazole stimulated aflatoxin synthesis on media which normally support toxin formation. Miconazole inhibited respiration and altered mitochondrial ultrastructure, suggesting that miconazole inhibits growth and stimulates aflatoxin production by depressing mitochondrial activity.  相似文献   

9.
Trifluoperazine, an anti-calmodulin agent, inhibited aflatoxin production by Aspergillus parasiticus NRRL 2999, without affecting the growth significantly. Culturing the organism for 3 days in the presence of 0.14mm trifluoperazine resulted in a generalized decrease in the production of all aflatoxins; the production of aflatoxin B1, a potent hepatocarcinogen, was inhibited to 88% under such conditions. Culturing 7-day-old preformed cultures in the presence of higher concentrations of trifluoperazine (>1mm) completely abolished production of all aflatoxins including AFB1. The inhibitory influence of trifluoperazine on aflatoxin production was accompanied by calmodulin-dependent phosphorylation of an 85kDa cytoplasmic calmodulin-binding protein. While the functions of calmodulin in mediating primary events of germination, growth and differentiation in fungi have earlier been reported, the present results indicate a possible role for calmodulin in the production of fungal toxins.  相似文献   

10.
Rasooli I  Owlia P 《Phytochemistry》2005,66(24):2851-2856
The essential oils from Thymus eriocalyx and Thymus X-porlock obtained by hydrodistillation were analyzed by GC/MS. The major components of T. eriocalyx and T. X-porlock oils were thymol (63.8, 31.7%), beta-phellandrene (13.30, 38.7%), cis-sabinene hydroxide (8.1, 9.6%), 1,8-cineole (2, 1.7%), and beta-pinene (1.31, 2%), respectively. Antifungal activities of the oils were studied with special reference to the inhibition of Aspergillus parasiticus growth and aflatoxin production. Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of the oils were determined. Static effects of the above oils against A. parasiticus were at 250 ppm and lethal effects of T. eriocalyx and T. X-porlock were 500 and 1000 ppm of the oils, respectively. Aflatoxin production was inhibited at 250 ppm of both oils with that of T. eriocalyx being stronger inhibitor. Transmission electron microscopy (TEM) of A. parasiticus exposed to MIC level (250 ppm) of the oils showed irreversible damage to cell wall, cell membrane, and cellular organelles. It is concluded that the essential oils could be safely used as preservative materials on some kinds of foods at low concentrations to protect them from fungal infections.  相似文献   

11.
Trifluoperazine, an anti-calmodulin agent, inhibited aflatoxin production by Aspergillus parasiticus NRRL 2999, without affecting the growth significantly. Culturing the organism for 3 days in the presence of 0.14mm trifluoperazine resulted in a generalized decrease in the production of all aflatoxins; the production of aflatoxin B1, a potent hepatocarcinogen, was inhibited to 88% under such conditions. Culturing 7-day-old preformed cultures in the presence of higher concentrations of trifluoperazine (>1mm) completely abolished production of all aflatoxins including AFB1. The inhibitory influence of trifluoperazine on aflatoxin production was accompanied by calmodulin-dependent phosphorylation of an 85kDa cytoplasmic calmodulin-binding protein. While the functions of calmodulin in mediating primary events of germination, growth and differentiation in fungi have earlier been reported, the present results indicate a possible role for calmodulin in the production of fungal toxins.  相似文献   

12.
Non-commercial spices and herbs Tetrapleura tetrapetra, Triumfetta cordifolia, Garcina kola, Monodora myristica and Xylopia aethiopica at 0.08 to 0.32% (w/v) decreased the mycelial weight of Aspergillus parasiticus NRRL 2999 in yeast extract/sucrose broth by up to 68%. Aflatoxin production, monitored with ELISA, was most effectively decreased, from 97 to 23 g/ml, when the extract of G. kola was added at 0.32% (w/v).  相似文献   

13.
AIMS: To establish a relationship between lipase gene expression and aflatoxin production by cloning the lipA gene and studying its expression pattern in several aflatoxigenic and nontoxigenic isolates of Aspergillus flavus and A. parasiticus. METHODS AND RESULTS: We have cloned a gene, lipA, that encodes a lipase involved in the breakdown of lipids from aflatoxin-producing A. flavus, A. parasiticus and two nonaflatoxigenic A. flavus isolates, wool-1 and wool-2. The lipA gene was transcribed under diverse media conditions, however, no mature mRNA was detected unless the growth medium was supplemented with 0.5% soya bean or peanut oil or the fungus was grown in lipid-rich medium such as coconut medium. The expression of the lipase gene (mature mRNA) under substrate-induced conditions correlated well with aflatoxin production in aflatoxigenic species A. flavus (SRRC 1007) and A. parasiticus (SRRC 143). CONCLUSIONS: Substrate-induced lipase gene expression might be indirectly related to aflatoxin formation by providing the basic building block 'acetate' for aflatoxin synthesis. No direct relationship between lipid metabolism and aflatoxin production can be ascertained, however, lipase gene expression correlates well with aflatoxin formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Lipid substrate induces and promotes aflatoxin formation. It gives insight into genetic and biochemical aspects of aflatoxin formation.  相似文献   

14.
The optimum levels of sucrose, (NH4)2SO4, MgSO4, KH2PO4 and ZnSO4 for aflatoxin production in a chemically defined medium have been established. The last two were found to be essential for fungal growth and aflatoxin production. The effect of various carbon sources on aflatoxin production was tested using the defined medium. Asparagine was found to be essential for aflatoxin production. Very little aflatoxin was produced in the absence of asparagine with any of the other inorganic nitrogen sources tested. Supplementation with yeast extract, Casamino acids, Casitone and peptone increased the aflatoxin yield, but omission of asparagine led to decreased aflatoxin yields even when complex nitrogen sources were present. Asparagine could be replaced by aspartic acid or alanine.  相似文献   

15.
The relevance of free radical generation and oxidative stress with regard to aflatoxin production was examined by comparing the oxygen requirement and antioxidant status of a toxigenic strain of Aspergillus parasiticus with that of a nontoxigenic strain at early (trophophase) and late logarithmic (idiophase) growth phases. In comparison to the nontoxigenic strain, wherein the oxygen requirements were relatively unaltered at various growth phases, the toxigenic strain exhibited greater oxygen requirements at trophophase coinciding with onset of aflatoxin production. The activities of antioxidant enzymes such as xanthine oxidase, superoxide dismutase, and glutathione peroxidase and the mycelial contents of thiobarbituric acid-reactive substances as well as of reduced glutathione were all enhanced during the progression of toxigenic strain from trophophase to idiophase. The combined results suggest that aflatoxin production by the toxigenic strain may be a consequence of increased oxidative stress leading to enhanced lipid peroxidation and free radical generation.  相似文献   

16.
17.
Six isolates of Bacillus pumilus were tested for their ability to inhibit aflatoxin production of Aspergillus parasiticus NRRL 2999 in yeast extract sucrose (YES) broth. Aflatoxin production was inhibited in both simultaneous and deferred antagonism assays, suggesting that the inhibitory activity was due to extracellular metabolite(s) produced in cell-free supernatant fluids of cultured broth. The inhibition was not due to organic acids or hydrogen peroxide produced by B. pumilus since the inhibitory activity was not lost after pH adjustment or treatment of supernatant fluids with catalase. A range of media tested for the production of inhibitory metabolite(s) in supernatant fluids showed that all media supported bacterial growth and production of the metabolite(s). The metabolite(s) were produced over a wide range of temperature (25 to 37°C) and pH (4 to 9) of growth of B. pumilus. They were stable over a wide range of pH (4 to 10) and were not inactivated after autoclaving at 121°C for 30 minutes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The effect of ultraviolet light irradiation (254 nm) on both the viability and the aflatoxin-producing ability of the fungus Aspergillus parasiticus NRRL 2999, a good aflatoxin-producing strain, was studied. This strain showed noticeable resistance and irradiation for more than 10 min was necessary to reduce survival to under 10%, while the white mutants were more susceptible (5 min of irradiation reduced survival to under 1%). Induction of mutants with complete loss of aflatoxigenicity was rare and only 3 of the 1463 survivors tested were aflatoxinless.  相似文献   

19.
The relevance of Ca2+-calmodulin-mediated processes in channelling acetate for aflatoxin formation was investigated by studying the influence of trifluoperazine (an anticalmodulin agent) on [14C]-acetate incorporation and activity of acetyl-CoA carboxylase in Aspergillus parasiticus NRRL 2999. Culturing the organism in presence of 0.14 mmol l-1 trifluoperazine resulted in 55% decrease of [14C]-acetate incorporation into aflatoxin B1, along with an 80% decrease in acetyl-CoA carboxylase activity at periods corresponding to maximal aflatoxin production. Concomitant decrement (35%) in the activity of glucose-6-phosphate dehydrogenase indicated decreased availability of reduction potential (NADPH) required for aflatoxin biosynthesis. The ability of calmodulin to activate and trifluoperazine to inhibit acetyl-CoA carboxylase activity in a dose-dependent manner was also noted under in vitro conditions. The combined results suggest calmodulin-mediated activation of acetyl-CoA carboxylase as an important event for aflatoxin production.  相似文献   

20.
Previous observations that the presence of caffeine could cause a reduction in the specific productivity of aflatoxins by Aspergillus parasiticus were confirmed. However, it was also shown that the reisolation of A. parasiticus from media containing caffeine as the sole source of nitrogen, provided a strain with a significantly reduced specific productivity even when grown in the absence of caffeine. This property has remained stable over several subcultures. The specific productivity of this strain is further reduced when it is grown in the presence of sub-inhibitory concentrations of caffeine. Under normal culture conditions it appears to be indistinguishable from the parent strain except in the reduced specific productivity of aflatoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号