首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An epimeric mixture of 24-hydroxy-[24-3H]vitamin D3 was synthesized by the reduction of 24-ketovitamin D3 by sodium borotritide. The epimeric mixture was converted to the trimethylsilylether derivatives and subjected to high-pressure liquid chromatography using silica gel columns to separate the 24-hydroxy-[24-3H]vitamin D3 isomers. The 24R-hydroxy-[24-3H] vitamin D3 induced calcification in rachitic rats while the 24S-hydroxy-[24-3H] vitamin D3 had little or no such activity. As both isomers of 24-hydroxy-vitamin D3 are metabolized to 24,25-dihydroxyvitamin D3, it appears that the 24-hydroxyvitamin D3-25-hydroxylase does not discriminate between the isomers. Only the R-isomer of 24-hydroxyvitamin D3 is metabolized to 1,24-dihydroxyvitamin D3, although only trace amounts of this compound were found 2 days after the administration of 24-hydroxyvitamin D3. The striking difference in the metabolism of the isomers is the high selectivity of the 1-hydroxylase for R-isomer. It is suggested that the high specificity of biological activity for the R-isomer of 24-hydroxyvitamin D3 is because of the specificity of the 1-hydroxylation of 24,25-dihydroxyvitamin D3 for the R configuration.  相似文献   

2.
To evaluate possible functional roles for 24,25-dihydroxyvitamin D3, 24,24-difluoro-25-hydroxyvitamin D3 has been synthesized and shown to be equally as active as 25-hydroxyvitamin D3 in all known functions of vitamin D. The use of the difluoro compound for this purpose is based on the assumption that the C-F bonds are stable in vivo and that the fluorine atom does not act as hydroxyl in biological systems. No 24,25-dihydroxyvitamin D3 was detected in the serum obtained from vitamin D-deficient rats that had been given 24,24-difluoro-25-hydroxyvitamin D3, while large amounts were found when 25-hydroxyvitamin D3 was given. Incubation of the 24,24-difluoro compound with kidney homogenate prepared from vitamin D-replete chickens failed to produce 24,25-dihydroxyvitamin D3, while the same preparations produced large amounts of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Kidney homogenate prepared from vitamin D-deficient chickens produced 24,24-difluoro-1,25-dihydroxyvitamin D3 from 24,24-difluoro-25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. In binding to the plasma transport protein for vitamin D compounds, 24,24-difluoro-25-hydroxyvitamin D3 is less active than 25-hydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3. In binding to the chick intestinal cytosol receptor, 24,24-difluoro-25-hydroxyvitamin D3 is more active than 25-hydroxyvitamin D3 which is itself more active than 24R,25-dihydroxyvitamin D3. The 24,24-difluoro-1,25-dihydroxyvitamin D3 is equal to 1,25-dihydroxyvitamin D3, and both are 10 times more active than 1,24R,25-trihydroxyvitamin D3 in this system. These results provide strong evidence that the C-24 carbon of 24,24-difluoro-25-hydroxyvitamin D3 cannot be hydroxylated in vivo, and, further, the 24-F substitution acts similar to H and not to OH in discriminating binding systems for vitamin D compounds.  相似文献   

3.
1α,25-Difluorovitamin D3 has been synthesized by reacting 1,25-dihydroxyvitamin D3-3-acetate with diethylaminosulfurtrifluoride followed by hydrolysis. Retention of configuration of the fluoro group in this reaction was demonstrated by physical studies using 1α-fluoro and 1β-fluorovitamin D3 models. The 1,25-difluorovitamin D3 compound possessed no vitamin D-like activity demonstrating the importance of 1α- and 25-hydroxylations of vitamin D for activity. However, 1,25-difluorovitamin D3 had no anti-25-hydroxylation activity and no antivitamin D activity. Since 25-fluorovitamin D3 has anti-25-hydroxylase activity, it appears the introduction of a fluoro group on the 1 position diminishes interaction of the vitamin D molecule with the 25-hydroxylase system.  相似文献   

4.
25-Hydroxyvitamin D3 1α-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D3 into 1α,25-dihydroxyvitamin D3, a vitamin D receptor ligand. 25-Hydroxyvitamin D3 has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1α-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D3 has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D3 internalisation, in Cyp27b1?/? cells explains their higher sensitivity to 25-hydroxyvitamin D3. 25-Hydroxyvitamin D3 action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D3. Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D3 in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D3 with 1α,25-dihydroxyvitamin D3 in Cyp27b1?/? cells further demonstrates the agonistic action of 25-hydroxyvitamin D3 and suggests that a synergism between 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 might be physiologically important. In conclusion, 25-hydroxyvitamin D3 is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.  相似文献   

5.
The chemical synthesis of 3-deoxy-1α-hydroxyvitamin D3 from cholesterol is described. This steroid is a highly important analog of the hormonally active form of vitamin D, 1α, 25-dihydroxyvitamin D3; it is the only analog presently available for structure-function studies which lacks the 3β-hydroxyl but retains the key 1α-hydroxyl of 1α, 25-dihydroxyvitamin D3. The new steroid is highly biologically active; it stimulated intestinal calcium absorption significantly more rapidly than vitamin D3 and as rapidly as 1α, 25-dihydroxyvitamin D3.  相似文献   

6.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

7.
Two new sidechain-modified analogs of vitamin D3, 25-azavitamin D3 and 25-fluorovitamin D3, were prepared; both compounds were found to inhibit the in vivo 25-hydroxylation of vitamin D3 in the rat. 25-Azavitamin D3 was chemically synthesized from a degradation product of stigmasterol by a six-step process. The desired carbon skeleton was efficiently assembled by alkylation of a suitably protected C-20 bromomethylpregnane with the enolate of N,N-dimethylacetamide (70%). The completion of the synthesis utilized the known photochemistry of steroidal 5,7-dienes to prepare the vitamin D triene system. In contrast, 25-fluorovitamin D3 was prepared by direct vitamin modification. 25-Hydroxyvitamin D3 3-acetate was fluorinated with diethylaminosulfur trifluoride to give 25-fluorovitamin D3 3-acetate (59%); saponification provided the desired analog. When vitamin D-deficient rats on a low calcium diet were dosed with [3-3H]vitamin D3 (0.05 μg), 10% of the dose was found in serum as 25-hydroxyvitamin D3 4 hr after administration. If 25-azavitamin D3 (50 or 200 μg) was given 2 hr before the radiolabeled vitamin D3, however, serum 25-hydroxyvitamin D3 concentration was markedly reduced. 25-Fluorovitamin D3 caused similar reduction when administered at much lower doses.  相似文献   

8.
Homogenates of kidney from laying Japanese quail incubated in vitro with 25-hydroxy-[26,27-3H] vitamin D3 produce more 1,25-dihydroxy-[26,27-3H]vitamin D3 than do homogenates of kidney from mature nonlaying females or males maintained on the same diet and under identical conditions. Instead, the homogenates from male quail or nonlaying female quail convert 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3. The administration of 5 mg of estradiol to mature male quail 24 h prior to sacrifice suppressed the 25-hydroxyvitamin D3-24-hydroxylase and markedly stimulated 25-hydroxyvitamin D3-1-hydroxylase. The administration of estradiol to male quail caused hypercalcemia, which responded more slowly than did the 1-hydroxylase. As little as 0.1 mg of estradiol/quail was found effective in stimulating the 1-hydroxylase and suppressing the 24-hydroxylase. Other hormones such as follicle stimulating hormone (FSH), cortisone, testosterone, and progesterone, even at high dose levels, produced little or no change in the 25-hydroxyvitamin D3-1-hydroxylase. Testosterone did, however, suppress the 25-hydroxyvitamin D3-24-hydroxylase. The stimulation of the 25-hydroxyvitamin D3-1-hydroxylase by parathyroid hormone was of a smaller magnitude than that of the estradiol, and the effects of the two hormones were additive, suggesting that they function by a different mechanism.  相似文献   

9.
The Steroid hormon 1α, @5-Dihydroxyvitamin D3 has been shown to expert rapid effect (15 s to 5 min) in osteoblast. These occur in osteoblast-like cells lacking the nuclear vitamin D receptor, ROS 24/1, suggesting that a separate signalling system mediates the rapid action. These non-genomic action include rapid activation of phospholipase C and opening of calcium channels, pointing to a membrane localization of this signalling system. Previous studies have shown that the 1β epimer of 1α25-dihydroxyvitamina D3 can block these rapid action, indicating that the 1β epimer may bind to the recptor responsible for the rapid action sin a competative manner. We have assessed the displacement of 3H-1α,25dihydroxyvitamin D3 by vitamin D compounds, as well as the apparent dissociation constant of 1α25-dihydroxyvitamin D3 and its 1β epimer for the memberane receptor in membrane prepration from ROS 24/1 cells. Increasing concentrations of 1α25-dihydroxyvitamin D3, 7.25 nM to 725 nM, displaced 3H-1α25-dihydrxyvitamin D3 from the membranes with 725 nM of the hormone displacing 40–49% of the radioactivity. Similarly, 1β,25-dihydroxyvitamin D3, 7.25 nM and 72.5 nM, displaced 1α25-dihydroxyvitamin D3 binding while 25-hydroxyvitamin D3, 7.25 nM, did not. The apparent dissociation constant (KD) for 1α25-dihydroxyvitamin D3 was detrermined from displacement of 3H-1α25-dihydroxyvitamin D3 yielding a value of 8.1 × 10?7 M by Scatchard analysis. The KD for the 1β epimer determine from displacement of 3H-1α25-dihydroxyvitamin D3 was 4.8 × 10?7 M. The data suggest the presence of a receptor on the membrane of ROS 24/1 cells that reconize 1α25-dihydroxyvitamin D3 and its 1β epimer, but not 25-dihydroxyvitamin D3. Its ability to reconize the 1β epimer which appears to be a specific anagonist of the rapid effect of the hormone suggests that these studies may be the initial steps in the isolation and characterization of the signalling system mediating the rapid action of vitamin D.  相似文献   

10.
Chemically synthesized 1 alpha-hydroxy-25-fluorovitamin D3 was compared to 1,25-dihydroxyvitamin D3 for potency in the chick intestinal cytosol-binding protein assay, induction of intestinal calcium transport, mobilization of calcium from bone, and epiphyseal plate calcification in the rat. The 25-fluorinated analogue causes 50% displacement of 1,25-dihydroxy[23,24-3H]D3 at 1.8 X 10(-8) M in the competitive protein-binding assay, whereas only 5.6 X 10(-11) M of unlabeled 1,25-dihydroxyvitamin D3 is needed for equal competition. This 315-fold difference between and 1 alpha-hydroxy-25-fluorovitamin D3 indicates that the fluoro analogue is about equipotent with 1 alpha-hydroxyvitamin D3 in the protein-binding assay. However, 1 alpha-hydroxy-25-fluorovitamin D3 is 1/50 as active as 1,25-dihydroxyvitamin D3 in vivo in the stimulation of intestinal calcium transport and bone calcium mobilization in vitamin D deficient rats on a low-calcium diet. Likewise, 1 alpha-hydroxy-25-fluorovitamin D3 is about 40 times less active than 1,25-dihydroxyvitamin D3 in inducing endochondrial calcification in rachitic rats. No selective actions of 1alpha-hydroxy-25-fluorovitamin D3 were noted. Since the 25 position of the analogue is blocked by a fluorine atom, it appears that 25-hydroxylation of 1 alpha-hydroxylated vitamin D compounds in vivo is not an obligatory requirement for appreciable vitamin D activity.  相似文献   

11.
Inhibition of vitamin D metabolism by ethane-1-hydroxyl-1, 1-diphosphonate   总被引:1,自引:0,他引:1  
The administration of disodium-ethane-1-hydroxy-1,1-diphosphonate (20 mg/kg body weight subcutaneously) to chicks given adequate amounts of vitamin D3 causes a hypercalcemia, inhibits bone mineralization, and inhibits intestinal calcium transport. The administration of 1,25-dihydroxyvitamin D3, a metabolically active form of vitamin D3, restores intestinal calcium absorption to normal but does not restore bone mineralization in disodium-ethane-1-hydroxy-1,1-diphosphonate-treated chicks. In rachitic chicks, the disodium-ethane-1-hydroxy-1,1-diphosphonate treatment does not further reduce the low intestinal calcium transport values while it nevertheless further reduces bone ash levels and increases serum calcium concentration.These observations prompted a more detailed study of the relationship between disodium-ethane-1-hydroxy-1,1-diphosphonate treatment and vitamin D metabolism. A study of the hydroxylation of 25-hydroxyvitamin D3 in an in vitro system employing kidney mitochondria from chicks receiving disodium-ethane-1-hydroxy-1,1-diphosphonate treatment demonstrates a marked decrease in 1,25-dihydroxyvitamin D3 production and a marked increase in the 24,25-dihydroxyvitamin D3 production. In addition, the in vivo metabolism of 25-hydroxy-[26,27-3H]vitamin D3 in disodium-ethane-1-hydroxy-1,1-diphosphonate treated chicks supports the in vitro observations. In rachitic chicks the disodium-ethane-1-hydroxy-1,1-diphosphonate treatment markedly reduces the 25-hydroxyvitamin D3-1-hydroxylase activity of kidney, but does not increase the 25-hydroxyvitamin D3-24-hydroxylase.These results provide strong evidence that large doses of disodium-ethane-1-hydroxy-1,1-diphosphonate produce a marked effect on calcium metabolism via alterations in the metabolism of vitamin D as well as the expected direct effect on the bone.  相似文献   

12.
The intestinal nuclear receptor for lα,25-dihydroxyvitamin D3 has been utilized to determine the ability of vitamin D-active sterols to compete with this hormone at the molecular level. 25-Hydroxyvitamin D3 and lα-hydroxyvitamin D3 must be present in 150 and 450 times the concentration respectively of lα,25-dihydroxyvitamin D3, invitro, to displace the physiologic hormone. These data indicate that: i) superphysiologic levels of 25-hydroxyvitamin D3 may simulate lα,25-dihydroxyvitamin D3 and act directly on isolated target organs and ii) the biologic potency observed for low doses of lα-hydroxyvitamin D3, invivo, is probably the result of 25-hidroxylation of the lα-derivative to form lα,25-dihydroxyvitamin D3.  相似文献   

13.
Structural similarities between 25S,26-dihydroxyvitamin D3 and 25-hydroxyvitamin D3-26,23-lactone and their concomitant multifold increase in the plasma of animals treated with pharmacological doses of vitamin D3 suggest a precursor-product relationship. However, a single dose of 25S,26-[3H]dihydroxyvitamin D3 given to rats treated chronically with pharmacological amounts of vitamin D3 did not result in detectable plasma 25-[3H]hydroxyvitamin D3-26,23-lactone. Multiple doses of synthetic 25S,26-dihydroxyvitamin D3 given to vitamin D3-deficient rats treated chronically with pharmacological amounts of vitamin D2 also did not result in detectable plasma 25-hydroxyvitamin D3-26,23-lactone. Furthermore, homogenates prepared from vitamin d-deficient chickens, dosed with 1,25-dihydroxyvitamin D3, converted 25-[3H]hydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. But these same homogenates did not convert 25S,26-[3H]dihydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. These data indicate that 25,26-dihydroxyvitamin D3 is not an intermediate in 25-hydroxyvitamin D326, 23-lactone formation.  相似文献   

14.
The synthesis of 1α-25-dihydroxyvitamin D2 and of several stereoisomers (5,6-trans and 1β-hydroxy isomers and the 24R-epimers of these compounds) was reported. Synthesis was accomplished from two different starting materials, 25-hydroxyvitamin D2 and 25,25-ethylenedioxy-26-norvitamin D2, and involved C-1-hydroxylation via 3,5-cyclovitamin D intermediates. Synthetic 1α,25-dihydroxyvitamin D2 was found to be identical with the biologically generated natural product. An analysis of the binding affinity of the synthetic products for the 1α,25-dihydroxyvitamin D3 receptor protein showed that isomerization of the 5,6 double bond from cis to trans, or epimerization of the 24-methyl group from S to R, reduced ligand binding to the receptor only slightly, while both changes together led to a 100-fold reduction of binding affinity. The epimerization of the 1-hydroxy function from 1α to 1β attenuated binding dramatically (ca. 1000-fold).  相似文献   

15.
The biological activity of 24,24-difluoro-25-hydroxyvitamin D3 was assessed using elevation of serum phosphorus and healing of rickets of vitamin D-deficient rats. Various levels of 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were administered daily for 2 weeks in the dose range of 6.5 to 3250 pmol after feeding rats a low phosphorus, vitamin D-deficient diet for 3 weeks. Vitamin D3 was concurrently tested at dose levels of 650 and 3250 pmol. 24,24-Difluoro-25-hydroxyvitamin D3 is approximately equipotent with 25-hydroxyvitamin D3 in stimulation of growth, mineralization of rachitic bone, and elevation of serum inorganic phosphorus. Radiological manifestations of rickets were also equally improved by 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3. Compared with vitamin D3, these compounds were approximately 5 to 10 times more active in mineralization using rats on a low phosphorus, vitamin D-deficient diet. The functional role, if any, for 24-hydroxylated vitamin D compounds, such as 24,25-dihydroxyvitamin D3, therefore remains obscure. It appears that vitamin D compounds that cannot be 24-hydroxylated evoke no disorder in bone mineralization.  相似文献   

16.
17.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

18.
An antibody was prepared from serum of rabbits injected with a pure inhibitor protein obtained from rat serum for chick renal 25-hydroxyvitamin D3-1α-hydroxylase. The antibody was separated from the endogenous inhibitor in rabbit serum. The antibody shows a single precipitin line with the rat serum antigen and with crude calf serum. Furthermore, the antibody removes the 4.0 S 25-hydroxyvitamin D3 binding protein from rat serum. The removal of the 25-hydroxyvitamin D3 binding protein from rat serum with antibody brings about a proportionate removal of inhibitor of the 25-hydroxyvitamin D3-1α-hydroxylase. The pure inhibitor binds 25-hydroxyvitamin D3, as demonstrated by sucrose density gradient sedimentation, and shows specificity of binding identical to the serum transport globulin for 25-hydroxyvitamin D3. Thus, the previously reported inhibitor of the 25-hydroxyvitamin D3-1α-hydroxylase in rat preparations is the serum 25-hydroxyvitamin D3 transport protein or some derivative thereof. The antibody added to rat renal mitochondrial preparations does increase the activity of the 1- and 24-hydroxylases slightly but not markedly.  相似文献   

19.
The isolation and identification of two metabolites of vitamin D2 found in mammalian and avian species are reported. They are 24-hydroxyvitamin D2 and 24,25-dihydroxyvitamin D2. Their existence suggests that 24-hydroxylation occurs in a sterospecific manner in the 24R position and adds further support to the theory that vitamin D2 metabolism qualitatively parallels that of vitamin D3.  相似文献   

20.
The metabolism of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] in the rat has been studied under both in vivo and in vitro conditions. A time course study of the appearance of 1α,25-dihydroxyvitamin D3-26,23-lactone in the plasma following intravenous or oral administration of 1α,25(OH)2D3 suggests that the small intestine may take part in production of the 1α,25(OH)2D3-26,23-lactone. In an in vitro study using a homogenate of rat small intestinal mucosa, 1α,25(OH)2D3 undergoes further metabolism to give more polar metabolite(s) which comigrate with authentic 1α,24,25-trihydroxyvitamin D3 [1α,24,25(OH)3D3] on Sephadex LH-20 column chromatography. The metabolic profile obtained after high-pressure liquid chromatography reveals two major classes of metabolites, designated Peaks X and Y. Peak X is an unidentified metabolite of 1α,25(OH)2D3. Peak Y is chromatographically identical with 1α,25-dihydroxyvitamin D3-26,23-lactone which has been recently isolated from the plasma of rats and dogs as a major metabolite produced in vivo from either 1α,25(OH)2D3 or 1α-hydroxyvitamin D3 (N. Ohnuma, K. Bannai, H. Yamaguchi, Y. Hashimoto, and A. W. Norman, 1980, Arch. Biochem. Biophys.204, 387). The enzyme activity which produces metabolites X and Y in the rat intestinal homogenates is induced in vitamin D-replete rats by pretreatment of the animals with intravenous 1.25 μg/kg doses of 1α,25-dihydroxyvitamin D3, 6 to 8 h previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号