首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute respiratory distress syndrome (ARDS) can be associated with various disorders. Among these, coronavirus infection may cause life-threatening severe acute respiratory syndrome (SARS). In this review, we present animal models and techniques for the study of ARDS, and discuss the roles and possible mechanisms of various chemical factors, including nitric oxide (NO). Our early work revealed that cerebral compression elicits severe hemorrhagic pulmonary edema (PE), leading to central sympathetic activation that results in systemic vasoconstriction. The consequence of systemic vasoconstriction is volume and pressure loading in the pulmonary circulation. Vasodilators, but not oxidant radical scavengers, are effective in the prevention of centrogenic PE. In isolated perfused lung, exogenous and endogenous NO enhances lung injury following air embolism and ischemia/reperfusion. In contrast, NO synthase (NOS) inhibitors reverse such lung injury. Although NO is important in maintaining vasodilator tone, hypoxia-induced pulmonary vasoconstriction is accompanied by an increase instead of a decrease in NO release. In animal and isolated lung studies, endotoxin produces acute lung injury that is associated with increases in cytokines and inducible NOS mRNA expression, suggesting that NO is toxic to the lung in endotoxin shock. Recently, we reported several rare cases that indicate that ARDS in patients with Japanese B encephalitis, lymphangitis with breast cancer and fat embolism is caused by different mechanisms. Our early and recent studies on ARDS and PE may provide information for clinical practice and the understanding of the pathogenesis of SARS.  相似文献   

2.
This research is aimed to discover the influence and underling mechanism of combined infusion of arginine vasopressin with levosimendan on acute lung injury in rat septic shock with norepinephrine supplemented. The traditional fecal peritonitis-induced septic shock model was undergone in rats for study. It is observed that the combined infusion supplemented with norepinephrine brought about a lower mean pulmonary artery pressure; lower high-mobility group box 1 levels, pulmonary levels of interleukin-6, and arterial total nitrate/nitrite; lower apoptotic cells scores and total histological scores; but higher pulmonary gas exchange when compared with the separate infusion group and norepinephrine group. This therapy shows potential clinical beneficial assistance in sepsis-induced acute lung injury. The results suggest the mechanism of such effect is through abating pulmonary artery pressure, and more importantly suppressing inflammatory responses in lung when compared with norepinephrine infusion group and the separate infusion of levosimendan or vasopressin alone.  相似文献   

3.
Pulmonary edema is common cause of acute respiratory failure and can be seen in not only cardiac but also noncardiac diseases. The pathophysiologic mechanism for the development of acute pulmonary edema in any clinical situation can usually be explained alterations in the forces governing the transvascular flux of fluid in the pulmonary microvasculature, according to the Starling equation. "Cardiac" pulmonary edema is primarily due to an increase in the capillary hydrostatic pressure of sufficient magnitude to overcome the forces maintaining fluid within the vessel and the ability of the lymphatics to drain the transudated fluid. On the other hand, pulmonary edema occurring in association with noncardiac disease (e.g., sepsis, aspiration or shock) is secondary to an increase in the permeability of the pulmonary microvasculature and is referred to as noncardiogenic pulmonary edema or the adult respiratory distress syndrome. This article examines the mechanisms for the development of pulmonary edema and discusses the differences between the cardiac and noncardiac types.  相似文献   

4.
Coronavirus disease‐2019 (COVID‐19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), demonstrates high morbidity and mortality caused by development of a severe acute respiratory syndrome connected with extensive pulmonary fibrosis. In this Perspective, we argue that adipocytes and adipocyte‐like cells, such as pulmonary lipofibroblasts, may play an important role in the pathogenic response to SARS‐CoV‐2. Expression of angiotensin‐converting enzyme 2 (the functional receptor for SARS‐CoV) is upregulated in adipocytes of patients with obesity and diabetes, which turns adipose tissue into a potential target and viral reservoir. This may explain why obesity and diabetes are potential comorbidities for COVID‐19 infections. Similar to the recently established adipocyte‐myofibroblast transition, pulmonary lipofibroblasts located in the alveolar interstitium and closely related to classical adipocytes demonstrate the ability to transdifferentiate into myofibroblasts that play an integral part of pulmonary fibrosis. This may significantly increase the severity of the local response to SARS‐CoV‐2 in the lung. To reduce the severity and mortality associated with COVID‐19, we propose to probe for the clinical response to thiazolidinediones, peroxisome proliferator activated receptor γ agonists that are well‐known antidiabetic drugs. Thiazolidinediones are able to stabilize lipofibroblasts in their “inactive” state, preventing the transition to myofibroblasts and thereby reducing the development of pulmonary fibrosis and stimulating its resolution.  相似文献   

5.
Recent work suggests that oxygen radicals may be important mediators of damage in a wide variety of pathologic conditions. In this review we consider the evidence supporting the participation of oxygen radicals in the adult respiratory distress syndrome, in ischemia reperfusion injury in the myocardium, and in cerebral vascular injury in acute hypertension and traumatic brain injury. In the adult respiratory distress syndrome there is active sequestration of polymorphonuclear neutrophils in the pulmonary vascular system. There is evidence that activation of these neutrophils results in the production of oxygen radicals which injure the capillary membrane and increase permeability, leading to progressive hypoxia and decreased lung compliance which are hallmarks of the syndrome. In acute arterial hypertension or experimental brain injury oxygen radicals are important mediators of vascular damage. The metabolism of arachidonic acid is the source of oxygen free radical production in these conditions. In myocardial ischemia and reperfusion injury, the ischemic myocyte is "primed" for free radical production. With reperfusion and reintroduction of molecular oxygen there is a burst of oxygen radical production resulting in extensive tissue destruction. Myocardial ischemia--reperfusion injury shares in common with the other two syndromes activation of the arachidonic acid cascade and acute inflammation. Thus it would appear that the generation of toxic oxygen species may represent a final common pathway of tissue destruction in several pathophysiologic states.  相似文献   

6.

Background  

Although mechanical ventilation (MV) is a major supportive therapy for patients with acute respiratory distress syndrome, it may result in side effects including lung injury. In this study we hypothesize that MMP-9 inhibition by doxycycline might reduce MV-related lung damage. Using a proteomic approach we identified the pulmonary proteins altered in high volume ventilation-induced lung injury (VILI). Forty Wistar rats were randomized to an orally pretreated with doxycycline group (n = 20) or to a placebo group (n = 20) each of which was followed by instrumentation prior to either low or high tidal volume mechanical ventilation. Afterwards, animals were euthanized and lungs were harvested for subsequent analyses.  相似文献   

7.
In this project we evaluate the dynamic changes during expiration at different levels of positive-end-expiratory pressure (PEEP) in ventilated patients. We wanted to discriminate between normal lung function and acute respiratory distress syndrome (ARDS). After approval by the local Ethic Committee we studied two ventilated patients: (one with normal lung function and one with ARDS) We used the 50 ms scan mode of the EBCT. The beam was positioned 1 cm above the diaphragm while the table position remained unchanged. We developed an electronic trigger that utilizes the respirator's synchronizing signal to start the EBCT at the onset of expiration. During controlled mechanical expiration at two levels of PEEP (0 and 15 cm H2O), pulmonary aeration was rated as: well-aerated (-900HU to -500HU), poorly aerated (-500HU to -100HU) and non-aerated (-100HU to +100HU). Pathological and normal lung functions showed different dynamic changes. The different PEEP levels resulted in a significant change of pulmonary aeration in the same patient. Although we studied only two patients, respiratory triggered EBCT may be accurate in discriminating pathological changes due to the abnormal lung function in a mechanically ventilated patient.  相似文献   

8.
Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat "fixed volume" model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury.  相似文献   

9.
Summary Alterations in pulmonary surfactant are partly responsible for the respiratory insufficiency seen under septic shock process. We have used an experimental model of LPS-induced shock in rats to examine the cells responsible for the pulmonary surfactant synthesis and its relationship to lung injury. (14C)Choline incorporation into phosphatidylcholine was significantly reduced in lung homogenates or type II cells obtained from LPS-treated animals. Addition of LPS in vitro fails to increase (14C)choline incorporation in type II cells obtained from LPS-treated animals. We suggest that this depression of pulmonary phosphatidylcholine synthesis may partly explain the occurrence of respiratory failure with septic shock.  相似文献   

10.
Adult respiratory distress syndrome is a common respiratory emergency which follows a variety of severe direct and indirect lung insults. Major features are severe respiratory distress, diffuse pulmonary infiltrations, reduced compliance and refractory hypoxemia due to shunt effect. Surfactant abnormalities may play a role in the mechanical derangement of lung function. Supportive care with mechanical ventilation and positive end expiratory pressure results in survival of approximately 50 percent of patients. Only minimal abnormalities in lung function are found in long-term survivors.  相似文献   

11.
急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)是常见的临床综合征,绝大多数ALI/ARDS患者需机械通气治疗,机械通气在提供可接受的肺部气体交换的同时治疗基础疾病,但机械通气本身也会引起肺部损伤,即机械通气性肺损伤(VILI)。而通过调整机械通气参数的设置,使用保护性通气策略可显著减低ALI/ARDS患者机械通气性肺损伤程度,从而减少肺部感染,缩短机械通气时间和住院时间,降低28天死亡率,明显改善ALI/ARDS患者的生存质量,起到最大程度地肺保护作用。本文从气道平台压,通气容积,呼气末正压等几个不同通气参数方面分别进行综述,讨论ALI/ARDS患者机械通气时使用保护性通气策略对于肺部损伤的影响。  相似文献   

12.
目的:探讨限制性液体复苏与常规液体复苏对失血性休克患者死亡率、凝血功能及并发症的影响。方法:选取失血性休克患者100例,随机分为限制组(n=55)和常规组(n=45),其中限制组采用限制性液体复苏抗休克,而常规组采用常规液体复苏。比较两组患者输液量及死亡率、血压与检验指标、并发症发生率。结果:与常规组相比,限制组患者输液量较少,死亡率较低,痊愈率较高,差异有统计学意义(P0.05)。与常规组相比,限制组患者平均动脉压、碱剩余明显较低,血红蛋白、血小板、红细胞比容明显较高,凝血酶原时间明显较短,差异有统计学意义(P0.001)。与常规组相比,限制组患者急性呼吸窘迫综合征、多器官功能障碍综合征发生率较低,差异有统计学意义(P0.05)。结论:限制性液体复苏为失血性休克患者赢得更多后续急诊手术止血时间,能降低患者死亡率和并发症如急性呼吸窘迫综合征、多器官功能障碍综合征的发生率。  相似文献   

13.
目的:探讨老年急性呼吸窘迫综合征肺内及肺外源性危险因素。方法:回顾性分析130例老年ARDS患者,对其中的肺内及肺外源性危险因素进行分析。结果:肺内源性ARDS病因以误吸和肺炎为主,而肺外源性ARDS则以脓毒血症、大手术后等为主;在死亡上均与多器官功能障碍综合征、呼吸衰竭为主要因素,且两组死亡率接近。结论:在老年急性呼吸窘迫综合征中,肺外源性在器官功能衰竭和氧合指数上重于肺内源性,但是在其他因素和死亡结局上均无明显差异性。  相似文献   

14.
Respiratory failure is one of the most serious clinical complications in the course of post-hemorrhagic changes. Cascade-like, systemic inflammatory reaction including the axis: intestines-liver-lung-immune system has a special significance in the pathogenesis of this syndrome. In order to broaden the knowledge of the respiratory insufficiency pathogenesis in hemorrhagic shock, the attempt was made to evaluate quantitatively rat mast cells localized under the pulmonary pleura, around the bronchi, around large vessels and placed in the interalveolar septa. The examinations were conducted on 24 young female Wistar rats, divided into two groups (n=12): (I) sham-operated and (II) shocked. The hemorrhagic shock was evoked by the withdrawal of 25% of the circulating blood. The shock duration was 75 min. The obtained lung sections were stained with toluidine blue and examined in a light microscope. After hemorrhagic shock, sections of lung samples revealed about two-fold increase in mast cell number/mm2 compared to controls. Mast cells were concentrated mostly around the bronchi and blood vessels. Hyperplasia and migration of mast cells may suggest their role in the modulation of inflammatory process causing acute lung injury in the hemorrhagic shock.  相似文献   

15.
A series of peptide-based transition-state human neutrophil elastase (HNE) inhibitors with N-terminal acidic moieties were synthesized and their inhibitory activity against HNE was evaluated both in vitro and in vivo. Our results show that compounds containing cyclic amide bridged acidic moieties at the N-terminal have not only improved water solubility but also high in vivo potency. Among these compounds, AE-3763 showed remarkable efficacy in hamster models of elastase-induced lung hemorrhage and lipopolysaccharide (LPS)-induced lung injury as well as in a mouse model of LPS/galactosamine-induced acute multiple organ dysfunctions. The water solubility of AE-3763 (>1000 mg/ml in H2O) was also far superior to that of any of the other compounds synthesized. Thus, it is believed that AE-3763 would be useful for treatment of HNE-associated respiratory disorders, such as acute respiratory distress syndrome (ARDS), acute lung injury (ALI), and acute exacerbation of chronic obstructive pulmonary disease (COPD).  相似文献   

16.
Lung complications during malaria infection can range from coughs and impairments in gas transfer to the development of acute respiratory distress syndrome (ARDS). Infecting C57BL/6 mice with Plasmodium berghei K173 strain (PbK) resulted in pulmonary oedema, capillaries congested with leukocytes and infected red blood cells (iRBCs), and leukocyte infiltration into the lungs. This new model of malaria-associated lung pathology, without any accompanying cerebral complications, allows the investigation of mechanisms leading to the lung disease. The activity of the amiloride-sensitive epithelial sodium channel (ENaC) in alveolar epithelial cells is decreased by several respiratory tract pathogens and this is suggested to contribute to pulmonary oedema. We show that PbK, a pathogen that remains in the circulation, also decreased the activity and expression of ENaC, suggesting that infectious agents can have indirect effects on ENaC activity in lung epithelial cells. The reduced ENaC activity may contribute to the pulmonary oedema induced by PbK malaria.  相似文献   

17.
Current perspectives for management of acute respiratory insufficiency in premature infants with acute respiratory syndrome and the pathology of acute respiratory insufficiency in the preterm infant, including the current therapy modalities on disposition are presented. Since the therapeutical challenge and primary clinical goal are to normalize ventilation ratio and lung perfusion, when respiratory insufficiency occurs, it is very important to introduce the respiratory support as soon possible, in order to reduce development of pulmonary cyanosis and edema, and intrapulmonary or intracardial shunts. A characteristic respiratory instability that reflects through fluctuations in gas exchange and ventilation is often present in premature infants. Adapting the respiratory support on a continuous basis to the infant’s needs is challenging and not always effective. Although a large number of ventilation strategies for the neonate are available, there is a need for additional consensus on management of acute respiratory distress syndrome in pediatric population lately redefined by Berlin definition criteria, in order to efficiently apply various modes of respiratory support in daily pediatrician clinical use.  相似文献   

18.
The formation of alpha(2)-macroglobulin (alpha(2)-M)/interleukin-8 (IL-8) complexes may influence the biological activity of IL-8 and the quantitative assessment of IL-8 activity. Therefore, in this study, concentrations of free IL-8 and IL-8 complexes with alpha(2)-M were measured in pulmonary edema fluid samples from patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and compared with control patients with hydrostatic pulmonary edema. Patients with ALI/ARDS had significantly higher concentrations of alpha(2)-M (P < 0.01) as well as alpha(2)-M/IL-8 complexes (P < 0.05). Because a substantial amount of IL-8 is complexed to alpha(2)-M, standard assays of free IL-8 may significantly underestimate the concentration of biologically active IL-8 in the distal air spaces of patients with ALI/ARDS. Furthermore, IL-8 bound to alpha(2)-M retained its biological activity, and this fraction of IL-8 was protected from proteolytic degradation. Thus complex formation may modulate the acute inflammatory process in the lung.  相似文献   

19.
The haemodynamic effects of salbutamol infusions at rates of 10,20, and 40 micrograms/min were measured in 11 patients with acute myocardial infarction complicated by left ventricular failure. Four patients also had cardiogenic shock. Consistent increases were observed in cardiac outputs at all doses (up to 56% at 40 micrograms/min), while the mean systemic arterial pressure fell slightly (average 5 mm Hg), implying a reduction in peripheral vascular resistance. Changes in right atrial pressure and indirect left atrial pressure (measured as pulmonary artery end-diastolic pressure) were small and not significant. Analysis of data from individual patients showed that the greatest increment in cardiac output was reached at 10 micrograms/min in two cases, 20 microgram/min in three, and 40 micrograms/min in the remaining six. Heart rate at these doses increased by an average of only 10 beats/min. Salbutamol failed to reduce left ventricular filling pressure and cannot be recommended for the treatment of pulmonary oedema in acute myocardial infarction. The increase in cardiac output, however, was considerable, so that the drug may be important in the management of low-output states. This action is probably a result of peripheral arteriolar dilatation (itself a result of beta 2-adrenoreceptor stimulation) and is achieved with little alteration in the principal determinants of myocardial oxygen requirement.  相似文献   

20.

Background

Differential diagnosis between acute cardiogenic pulmonary edema (APE) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) may often be difficult. We evaluated the ability of chest sonography in the identification of characteristic pleuropulmonary signs useful in the diagnosis of ALI/ARDS and APE.

Methods

Chest sonography was performed on admission to the intensive care unit in 58 consecutive patients affected by ALI/ARDS or by acute pulmonary edema (APE).

Results

Ultrasound examination was focalised on finding in the two groups the presence of: 1) alveolar-interstitial syndrome (AIS) 2) pleural lines abnormalities 3) absence or reduction of "gliding" sign 4) "spared areas" 5) consolidations 6) pleural effusion 7) "lung pulse". AIS was found in 100% of patients with ALI/ARDS and in 100% of patients with APE (p = ns). Pleural line abnormalities were observed in 100% of patients with ALI/ARDS and in 25% of patients with APE (p < 0.0001). Absence or reduction of the 'gliding sign' was observed in 100% of patients with ALI/ARDS and in 0% of patients with APE. 'Spared areas' were observed in 100% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). Consolidations were present in 83.3% of patients with ALI/ARDS in 0% of patients with APE (p < 0.0001). A pleural effusion was present in 66.6% of patients with ALI/ARDS and in 95% of patients with APE (p < 0.004). 'Lung pulse' was observed in 50% of patients with ALI/ARDS and in 0% of patients with APE (p < 0.0001). All signs, except the presence of AIS, presented a statistically significant difference in presentation between the two syndromes resulting specific for the ultrasonographic characterization of ALI/ARDS.

Conclusion

Pleuroparenchimal patterns in ALI/ARDS do find a characterization through ultrasonographic lung scan. In the critically ill the ultrasound demonstration of a dyshomogeneous AIS with spared areas, pleural line modifications and lung consolidations is strongly predictive, in an early phase, of non-cardiogenic pulmonary edema.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号