首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Creatine kinase in epithelium of the inner ear.   总被引:1,自引:0,他引:1  
Epithelium of the inner ear in the gerbil and mouse was examined immunocytochemically for presence of creatine kinase (CK). Marginal cells of the cochlear stria vascularis and dark cells and transitional cells of the vestibular system were found to contain an abundance of the MM isozyme (MM-CK). CK in these cells concurs with that which is coupled to Na,K-ATPase in other cells and is considered to supply ATP for the Na,K-ATPase that mediates the high KCl of endolymph. Inner hair cells revealed content of the BB isozyme and in this respect resembled the energy-transducing photoreceptor cells in retina. In addition, outer phalangeal (Deiters') cells stained for both MM- and BB-CK whereas inner phalangeal cells evidenced content of only the BB isozyme. Immunolocalization of CK appeared similar in mouse and gerbil inner ear. Specificity of the staining was affirmed by observations in agreement with those reported for CK in various cell types and by staining with antisera from more than one source.  相似文献   

11.
Mechanical filtering of sound in the inner ear.   总被引:1,自引:0,他引:1  
We have studied the distortion generated by the cochlea to gain insight into the mechanisms responsible for the sharp tuning or 'frequency selectivity' of the inner ear. We used two stimulating tones of moderate intensity which are progressively separated in frequency, and measured the ear canal cubic distortion components which are generated as a consequence of the stimulus interaction in the cochlea. We inferred that the distortion is generated from the frequency region of the higher of the two stimulus tones and that it is then band-pass filtered by a structure which is tuned to a frequency just over half an octave below that of the high-frequency tone. We suggest that the structure responsible for this band-pass filtering is the tectorial membrane, and we conclude that our results support theories of cochlear mechanics in which resonances due to the tectorial membrane interact with those of the basilar membrane to enhance the frequency selectivity of the inner ear.  相似文献   

12.
13.
14.
15.
16.
目的:研究三维透明化VR重建在内耳畸形中的表现,为先天性内耳疾病提供准确的影像诊断和临床治疗信息.方法:回顾32耳内耳畸形的64排HRCT容积数据,行三维透明化重建处理,按内耳畸形分类总结三维透明化重建方法及影像表现.结果:32耳的三维透明化VR重建图像结合透明化MPR重组图像均能很好揭示内耳畸形病变部位及程度,其中VR图像可以直观、立体地显示畸形的空间形态结构,透明化MPR重组图像可很好显示病变细节.本组先天内耳发育畸形有以下几种:耳蜗未发育(2耳);共同腔畸形(4耳);不完全分隔Ⅰ型(2耳,两例患者对侧耳均为共同腔畸形);不完全分隔Ⅱ型(即Mondini型)(16耳,多合并前庭、半规管及前庭导水管畸形);单纯前庭-半规管畸形2耳;单纯前庭导水管扩大(6耳).结论:三维透明化个性重建能准确评价内耳先天性疾病的类型和程度,为临床治疗提供重要的参考依据.  相似文献   

17.
Using two S phase markers, we determined the cell-cycle behavior of inner ear supporting cells from two species, the chicken and the oscar. The results indicate that chicken utricular supporting cells divide once and do not return to the cell cycle for at least 7 days. In contrast, supporting cell progeny in the oscar saccule return to S phase after 5 days. While both the chicken utricle and oscar saccule show ongoing supporting cell proliferation, these data indicate that there may be a dedicated recycling population of supporting cells in the oscar saccule but not in the chicken utricle that is responsible for hair cell production. An expulsion of proliferative cell progeny in the chicken utricle after 7 days may be a driving force for proliferation, as well as an explanation for why hair cell numbers do not increase in the chicken utricle with age. This was not seen in the oscar saccule, possibly explaining how this end organ increases in size throughout the adult life of the animal. The absence of S phase cell expulsion, however, does not rule out the role of cell death in the oscar saccule.  相似文献   

18.
19.
Axon guidance in the inner ear   总被引:1,自引:0,他引:1  
Statoacoustic ganglion (SAG) neurons send their peripheral processes to navigate into the inner ear sensory organs where they will ultimately become post-synaptic to mature hair cells. During early ear development, neuroblasts delaminate from a restricted region of the ventral otocyst and migrate to form the SAG. The pathfinding mechanisms employed by the processes of SAG neurons as they search for their targets in the periphery are the topic of this review. Multiple lines of evidence exist to support the hypothesis that a combination of cues are working to guide otic axons to their target sensory organs. Some pioneer neurites may retrace their neuronal migratory pathway back to the periphery, yet additional guidance mechanisms likely complement this process. The presence of chemoattractants in the ear is supported by in vitro data showing that the otic epithelium exerts both trophic and tropic effects on the statoacoustic ganglion. The innervation of ectopic hair cells, generated after gene misexpression experiments, is further evidence for chemoattractant involvement in the pathfinding of SAG axons. While the source(s) of chemoattractants in the ear remains unknown, candidate molecules, including neurotrophins, appear to attract otic axons during specific time points in their development. Data also suggest that classical axon repellents such as Semaphorins, Eph/ephrins and Slit/Robos may be involved in the pathfinding of otic axons. Morphogens have recently been implicated in guiding axonal trajectories in many other systems and therefore a role for these molecules in otic axon guidance must also be explored.  相似文献   

20.
Sensorineural hearing loss is the most common sensory disorder in humans. It is primarily due to the degeneration of highly specialised mechanosensory cells in the cochlea, the so-called hair cells. Hearing problems can also be caused or further aggravated by the death of auditory sensory neurons that convey the information from the hair cells to the brain stem. Despite the discovery of stem/progenitor cells in the mammalian cochlea, no regeneration of either damaged hair cells or auditory neurons has been observed in mammals, in contrast to what is seen in avians and non-mammalian vertebrates. The reasons for this divergence have not yet been elucidated, although loss of stem cells and/or loss of their phenotypic plasticity in adult mammals have been put forward as possible explanations. Given the high incidence of this disorder and its economic and social implications, a considerable number of research lines have been set up aimed towards the regeneration of cochlear sensory cell types. This review summarizes the various routes that have been explored, ranging from the genetic modification of endogenous cells remaining in the inner ear in order to promote their transdifferentiation, to the implantation of exogenous stem or progenitor cells and their subsequent differentiation within the host tissue. Prophylactic treatments to fight against progressive sensory cell degeneration in the inner ear are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号