首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca2+ ([Ca2+]c) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca2+influx. The [Ca2+]c level increased sharply, followed by a rapid increase in mitochondrial Ca2+ [Ca2+]m. The increase in the [Ca2+]m level accompanied a reduction in the [Ca2+]c level. After reaching a peak, the [Ca2+]c level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.  相似文献   

2.
The change in cytosolic free concentration of calcium ([Ca2+]cyt) plays a key role in regulating apoptosis in animal cells. In our experiment, we tried to investigate the function of Ca2+ in programmed cell death (PCD) in tobacco (Nicotiana tobacum, cultivar BY-2) protoplasts induced by salt stress. An obvious increase in [Ca2+]cyt was observed a few minutes after treatment and the onset of a decrease in mitochondrial membrane potential (ΔΨm) was also observed before the appearance of PCD, pre-treatment of protoplasts with EGTA or LaCl3 effectively retarded the increase in [Ca2+]cyt, which was concomitant with the decrease in the percentage of cell death and higher ΔΨm, pre-treatment with cyclosporine A (CsA) also effectively retarded the increase in [Ca2+]cyt, the decrease in ΔΨm and the onset of PCD. All these results suggest that Ca2+ is a necessary element in regulating PCD and the increase in [Ca2+]cyt and the opening of mitochondrial permeability transition pore (MPTP) could promote each other in regulating PCD in tobacco protoplasts induced by salt stress.Jiusheng Lin and Yuan Wang-These authors contributed equally for this work.  相似文献   

3.
4.
A model has been proposed in which mitochondrial Ca2+ ion transport serves to regulate mitochondrial matrix free Ca2+ ([Ca2+]m), with the advantage to the animal that this allows the regulation of pyruvate dehydrogenase and the tricarboxylate cycle in response to energy demand. This article examines recent evidence for dehydrogenase activation and for increases in [Ca2+]m in response to increased tissue energy demands, especially in cardiac myocytes and in heart. It critiques recent results on beat-to-beat variation in [Ca2+]m in cardiac muscle and also briefly surveys the impact of mitochondrial Ca2– transport on transient changes in cytosolic free Ca2+ in excitable tissues. Finally, it proposes that a failure to elevate [Ca2+]m sufficiently in response to work load may underlie some cardiomyopathies of metabolic origin.  相似文献   

5.
We here present a novel method, based on the targeting of the photoprotein aequorin, for measuring the concentration of Ca2+ ions in defined cellular compartments of intact cells. In this contribution we will discuss the application to mitochondria. A chimaeric cDNA was constructed by fusing in frame the aequorin cDNA with that for a mitochondrial protein. The cDNA encoded a “mitochondrially-targeted” aequorin, composed of a typical mitochondrial targeting signal at the N-terminus and the photoprotein at the C-terminus. The cDNA, inserted in the expression vector pMT2, was co-transfected into bovine endothelial and HeLa cells together with the selectable plasmid pSV2-neo and stable transfectants, selected for high aequorin production, were analyzed. In subcellular fractionations, aequorin was shown to be localized in mitochondria; in intact cells, the first direct measurement of mitochondrial free Ca2+, [Ca2+]m, were obtained, which showed that [Ca2+]m is low at rest (<0.5 μM), but rapidly increases to the micromolar range upon cell stimulation [1]. These data indicate that mitochondria “sense” very accurately the cytosolic Ca2+ concentration ([Ca2+]i), and after cell stimulation [Ca2+]m rises to values capable of activating the Ca2+-sensitive mitochondrial dehydrogenases.  相似文献   

6.
Evidence has accrued during the past two decades that mitochondrial Ca2+ plays an important role in the regulation of numerous cell functions such as energy metabolism. This implies that mitochondrial Ca2+ transport systems might be able to relay the changes of cytosolic Ca2+ concentration ([Ca2+]c) into mitochondrial matrix for regulating biochemical activities. To substantiate this idea, measurements of intramitochondrial free Ca2+ concentration ([Ca2+]m) become essential. In this article, we review the results from recent studies attempting to measure [Ca2+]m in living cells. In addition, the significance of each study is discussed.  相似文献   

7.
Proper cell functioning requires precise coordination between mitochondrial ATP production and local energy demand. Ionic calcium (Ca2+) plays a central role in this coupling because it activates mitochondrial oxidative phosphorylation (OXPHOS) during hormonal and electrical cell stimulation. To determine how mitochondrial dysfunction affects cytosolic and mitochondrial Ca2+/ATP handling, we performed life-cell quantification of these parameters in fibroblast cell lines derived from healthy subjects and patients with isolated deficiency of the first OXPHOS complex (CI). In resting patient cells, CI deficiency was associated with a normal mitochondrial ([ATP]m) and cytosolic ([ATP]c) ATP concentration, a normal cytosolic Ca2+ concentration ([Ca2+]c), but a reduced Ca2+ content of the endoplasmic reticulum (ER). Furthermore, cellular NAD(P)H levels were increased, mitochondrial membrane potential was slightly depolarized, reactive oxygen species (ROS) levels were elevated and mitochondrial shape was altered. Upon stimulation with bradykinin (Bk), the peak increases in [Ca2+]c, mitochondrial Ca2+ concentration ([Ca2+]m), [ATP]c and [ATP]m were reduced in patient cells. In agreement with these results, ATP-dependent Ca2+ removal from the cytosol was slower. Here, we review the interconnection between cytosolic, endoplasmic reticular and mitochondrial Ca2+ and ATP handling, and summarize our findings in patient fibroblasts in an integrative model.  相似文献   

8.
The prevalence of death from cardiovascular disease is significantly higher in elderly populations; the underlying factors that contribute to the age‐associated decline in cardiac performance are poorly understood. Herein, we identify the involvement of sodium/glucose co‐transporter gene (SGLT2) in disrupted cellular Ca2+‐homeostasis, and mitochondrial dysfunction in age‐associated cardiac dysfunction. In contrast to younger rats (6‐month of age), older rats (24‐month of age) exhibited severe cardiac ultrastructural defects, including deformed, fragmented mitochondria with high electron densities. Cardiomyocytes isolated from aged rats demonstrated increased reactive oxygen species (ROS), loss of mitochondrial membrane potential and altered mitochondrial dynamics, compared with younger controls. Moreover, mitochondrial defects were accompanied by mitochondrial and cytosolic Ca2+ ([Ca2+]i) overload, indicative of disrupted cellular Ca2+‐homeostasis. Interestingly, increased [Ca2+]i coincided with decreased phosphorylation of phospholamban (PLB) and contractility. Aged‐cardiomyocytes also displayed high Na+/Ca2+‐exchanger (NCX) activity and blood glucose levels compared with young‐controls. Interestingly, the protein level of SGLT2 was dramatically increased in the aged cardiomyocytes. Moreover, SGLT2 inhibition was sufficient to restore age‐associated defects in [Ca2+]i‐homeostasis, PLB phosphorylation, NCX activity and mitochondrial Ca2+‐loading. Hence, the present data suggest that deregulated SGLT2 during ageing disrupts mitochondrial function and cardiac contractility through a mechanism that impinges upon [Ca2+]i‐homeostasis. Our studies support the notion that interventions that modulate SGLT2‐activity can provide benefits in maintaining [Ca2+]i and cardiac function with advanced age.  相似文献   

9.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

10.
This paper reviews the model of the control of mitochondrial substrate oxidation by Ca2+ ions. The mechanism is the activation by Ca2+ of four mitochondrial dehydrogenases, viz: glycerol 3-phosphate dehydrogenase, the pyruvate dehydrogenase multienzyme complex (PDH), NAD-linked isocitrate dehydrogenase (NAD-IDH) and 2-oxoglutarate dehydrogenase (OGDH). This results in the increase, or near-maintenance, of mitochondrial NADH/NAD ratios in the activated state, depending upon the tissue and the degree of "downstream" activation by Ca2+, likely at the level of the F1F0 ATP-ase. Higher values of the redox span of the respiratory chain allow for greatly increased fluxes through oxidative phosphorylation with a minimal drop in protonmotive force and phosphorylation potential. As PDH, NAD-IDH and OGDH are all located within the inner mitochondrial membrane, it is changes in matrix free Ca2+ ( [Ca2+]m ) which act as a signal to these activities. In this article, we review recent work in which ([Ca2+]m) is measured in cells and tissues, using different techniques, with special emphasis on the question of the degree of damping of ([Ca2+]m) relative to changes in cytosol free Ca2+ in cells with rapid transients in cytosol Ca2+, e.g. cardiac myocytes. Further, we put forward the point of view that the failure of mitochondrial energy transduction to keep pace with cellular energy needs in some forms of heart failure may involve a failure of ([Ca2+]m) to be raised adequately to allow the activation of the dehydrogenases. We present new data to show that this is so in cardiac myocytes isolated from animals suffering from chronic, atreptozocin-induced diabetes. This raises the possibility of therapy based upon partial inhibition of mitochondrial Ca2+ efflux pathways, thereby raising ([Ca2+]m) at a given, time-average value of cytosol free Ca2+.  相似文献   

11.
Impairment of mitochondria function and cellular antioxidant systems are linked to aging and neurodegenerative diseases. In the eye, the retinal pigment epithelium (RPE) is exposed to a highly oxidative environment that contributes to age-related visual dysfunction. Here, we examined changes in mitochondrial function in human RPE cells and sensitivity to oxidative stress with increased chronological age. Primary RPE cells from young (9–20)-, mid-age (48–60)-, and >60 (62–76)-year-old donors were grown to confluency and examined by electron microscopy and flow cytometry using several mitochondrial functional assessment tools. Susceptibility of RPE cells to H2O2 toxicity was determined by lactate dehydrogenase and cytochrome c release, as well as propidium iodide staining. Reactive oxygen species, cytoplasmic Ca2+ [Ca2+]c, and mitochondrial Ca2+ [Ca2+]m levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate, fluo-3/AM, and Rhod-2/AM, respectively, adenosine triphosphate (ATP) levels were measured by a luciferin/luciferase-based assay and mitochondrial membrane potential (ΔΨm) estimated using 5,5′,6,6′-tetrachloro 1,1′3,3′-tetraethylbenzimid azolocarbocyanine iodide. Expression of mitochondrial and antioxidant genes was determined by real-time polymerase chain reaction. RPE cells show greater sensitivity to oxidative stress, reduction in expression of mitochondrial heat shock protein 70, uncoupling protein 2, and superoxide dismutase 3, and greater expression of superoxide dismutase 2 levels with increased chronological age. Changes in mitochondrial number, size, shape, matrix density, cristae architecture, and membrane integrity were more prominent in samples obtained from >60 years old compared to mid-age and younger donors. These mitochondria abnormalities correlated with lower ATP levels, reduced ΔΨm, decreased [Ca2+]c, and increased sequestration of [Ca2+]m in cells with advanced aging. Our study provides evidence for mitochondrial decay, bioenergetic deficiency, weakened antioxidant defenses, and increased sensitivity of RPE cells to oxidative stress with advanced aging. Our findings suggest that with increased severity of mitochondrial decay and oxidative stress, RPE function may be altered in some individuals in a way that makes the retina more susceptible to age-related injury.  相似文献   

12.
Cardiac mitochondrial matrix (m) free Ca2+ ([Ca2+]m) increases primarily by Ca2+ uptake through the Ca2+ uniporter (CU). Ca2+ uptake via the CU is attenuated by extra-matrix (e) Mg2+ ([Mg2+]e). How [Ca2+]m is dynamically modulated by interacting physiological levels of [Ca2+]e and [Mg2+]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg2+]e modulates Ca2+ uptake via the CU, it also alters bioenergetics in a matrix Ca2+–induced and matrix Ca2+–independent manner. To test this, we measured changes in [Ca2+]e, [Ca2+]m, [Mg2+]e and [Mg2+]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0–0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0–2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that >0.125 mM MgCl2 significantly attenuated CU-mediated Ca2+ uptake and [Ca2+]m. Incremental [Mg2+]e did not reduce initial Ca2+uptake but attenuated the subsequent slower Ca2+ uptake, so that [Ca2+]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca2+]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca2+]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg2+]m but it altered bioenergetics by its direct effect to decrease Ca2+ uptake. However, at a given [Ca2+]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg2+]e. Thus, [Mg2+]e without a change in [Mg2+]m can modulate bioenergetics independently of CU-mediated Ca2+ transport.  相似文献   

13.
Local Ca2+ transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca2+ release to activate mitochondrial Ca2+ uptake and to evoke a matrix [Ca2+] ([Ca2+]m) rise. [Ca2+]m exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca2+ release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca2+ sensitivity of both the Ca2+ release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca2+ accumulation in various apoptotic paradigms, methods are available for buffering of [Ca2+], for dissipation of the driving force of the mitochondrial Ca2+ uptake and for inhibition of the mitochondrial Ca2+ transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca2+ handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca2+ uptake on cytosolic [Ca2+] and [Ca2+]m in intact cultured cells.  相似文献   

14.
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca2+ results in the brief loss of Δψ [Mironova et al., J Bioenerg Biomembr (2004), 36:171–178]. Now we report that Pal and Ca2+, increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca2+ and the swelling of mitochondria. Inhibitors of the Ca2+ uniporter, ruthenium red and La3+, as well as EGTA added in 10 min after the Pal/Ca2+-activated pore opening, prevent the release of Ca2+ and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr2+], which leads to the activation of phospholipase A2 and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca2+ cycle, in which Ca2+ uptake is mediated by the Ca2+ uniporter and Ca2+ efflux occurs via a short-living Pal/Ca2+-activated pore.  相似文献   

15.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

16.
ADP influx and ADP phosphorylation may alter mitochondrial free [Ca2+] ([Ca2+]m) and consequently mitochondrial bioenergetics by several postulated mechanisms. We tested how [Ca2+]m is affected by H2PO4 (Pi), Mg2+, calcium uniporter activity, matrix volume changes, and the bioenergetic state. We measured [Ca2+]m, membrane potential, redox state, matrix volume, pHm, and O2 consumption in guinea pig heart mitochondria with or without ruthenium red, carboxyatractyloside, or oligomycin, and at several levels of Mg2+ and Pi. Energized mitochondria showed a dose-dependent increase in [Ca2+]m after adding CaCl2 equivalent to 20, 114, and 485 nM extramatrix free [Ca2+] ([Ca2+]e); this uptake was attenuated at higher buffer Mg2+. Adding ADP transiently increased [Ca2+]m up to twofold. The ADP effect on increasing [Ca2+]m could be partially attributed to matrix contraction, but was little affected by ruthenium red or changes in Mg2+ or Pi. Oligomycin largely reduced the increase in [Ca2+]m by ADP compared to control, and [Ca2+]m did not return to baseline. Carboxyatractyloside prevented the ADP-induced [Ca2+]m increase. Adding CaCl2 had no effect on bioenergetics, except for a small increase in state 2 and state 4 respiration at 485 nM [Ca2+]e. These data suggest that matrix ADP influx and subsequent phosphorylation increase [Ca2+]m largely due to the interaction of matrix Ca2+ with ATP, ADP, Pi, and cation buffering proteins in the matrix.  相似文献   

17.
Thomas E. Gunter  Shey-Shing Sheu 《BBA》2009,1787(11):1291-18337
Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca2+ concentration ([Ca2+]m) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca2+]m also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca2+]m can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca2+ is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca2+ pulses or transients. Mitochondria can also sequester Ca2+ from these transients so as to modify the shape of Ca2+ signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca2+ transport mechanisms and the PTP. The characteristics of these mechanisms of Ca2+ transport and a discussion of how they might function are described in this paper.  相似文献   

18.
The receptor‐evoked Ca2+ signal is sensed and translated by mitochondria. Physiological cytoplasmic Ca2+ ([Ca2+]c) oscillations result in mitochondrial Ca2+ ([Ca2+]m) oscillations, while large and sustained [Ca2+]c increase results in a pathologic increase in basal [Ca2+]m and in Ca2+ accumulation. The physiological [Ca2+]m signal regulates [Ca2+]c and stimulates oxidative metabolism, while excess Ca2+ accumulation causes cell stress leading to cell death. [Ca2+]m is determined by Ca2+ uptake mediated by the mitochondria Ca2+ uniporter (MCU) channel and by Na+‐ and H+‐coupled Ca2+ extrusion 1 .  相似文献   

19.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

20.
Regulation of intramitochondrial free calcium ([Ca2+]m) is critical in both physiological and pathological functioning of the heart. The full extent and importance of the role of [Ca2+]m is becoming apparent as evidenced by the increasing interest and work in this area over the last two decades. However, controversies remain, such as the existence of beat-to-beat mitochondrial Ca2+ transients; the role of [Ca2+]m in modulating whole-cell Ca2+ signalling; whether or not an increase in [Ca2+]m is essential to couple ATP supply and demand; and the role of [Ca2+]m in cell death by both necrosis and apoptosis, especially in formation of the mitochondrial permeability transition pore. The role of [Ca2+]m in heart failure is an area that has also recently been highlighted. [Ca2+]m can now be measured reasonably specifically in intact cells and hearts thanks to developments in fluorescent indicators and targeted proteins and more sensitive imaging technology. This has revealed interactions of the mitochondrial Ca2+ transporters with those of the sarcolemma and sarcoplasmic reticulum, and has gone a long way to bringing the mitochondrial Ca2+ transporters to the forefront of cardiac research. Mitochondrial Ca2+ uptake occurs via the ruthenium red sensitive Ca2+ uniporter (mCU), and efflux via an Na+/Ca2+ exchanger (mNCX). The purification and cloning of the transporters, and development of more specific inhibitors, would produce a step-change in our understanding of the role of these apparently critical but still elusive proteins. In this article we will summarise the key physiological roles of [Ca2+]m in ATP production and cell Ca2+ signalling in both adult and neonatal hearts, as well as highlighting some of the controversies in these areas. We will also briefly discuss recent ideas on the interactions of nitric oxide with [Ca2+]m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号