首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have reported previously that the 69-kDa major phosphoprotein, secreted by normal rat kidney (NRK) cells, is osteopontin, a glycosylated bone matrix protein. Here we show that this 69-kDa osteopontin is secreted by NRK cells in both phosphorylated (pp69) and nonphosphorylated (np69) forms, with estimated isoelectric points of 3.8 and 4.5, respectively. Electrophoretic analysis of radioiodinated cell surface proteins immunoprecipitated with an anti-69-kDa osteopontin serum, demonstrates that the 69-kDa osteopontin is also present on the cell surface, but only its phosphorylated form (pp69) shows such cell surface association. Because osteopontin mediates cell adhesion and spreading, and contains an Arg-Gly-Asp-Ser cell-binding sequence, our observations strongly suggest that the cell surface localization of pp69 osteopontin is receptor-mediated, and the modification by phosphorylation may be crucial for its receptor binding activity. We also report that antisera directed against either fibronectin or 69-kDa osteopontin co-immunoprecipitate both np69 osteopontin and fibronectin as a heat-dissociable complex. In contrast, pp69 osteopontin does not co-precipitate with fibronectin. These observations demonstrate an interactive relationship between np69 and soluble fibronectin. Furthermore, compared to NRK cells, vanadyl sulfate-treated NRK cells which acquire a reversible transformed phenotype, including anchorage-independent growth, show increased levels of pp69 on the cell surface, concomitant with significantly decreased levels of pp69 and elevated levels of np69 in the conditioned media. The data presented here establish transformation sensitivity of NRK cell-secreted osteopontin with respect to its secretion and cell surface localization, and demonstrate that phosphorylated and nonphosphorylated forms of osteopontin have different physiological properties, which may regulate the functional roles of this extracellular matrix protein.  相似文献   

2.
Human cytomegalovirus glycoprotein B (gB) is synthesized as a 105-kDa nonglycosylated polypeptide and cotranslationally modified by addition of N-linked oligosaccharides to a 160-kDa precursor in the endoplasmic reticulum (ER). It is then transported to the Golgi complex, where it is endoproteolytically cleaved to form the disulfide-linked mature gp55-116 complex. Pulse-chase experiments demonstrate that the 160-kDa gB precursor was transiently associated with calnexin, a membrane-bound chaperone, in the ER. The association was maximal immediately after synthesis, and they dissociated with a half-time of 15 min. Complete inhibition of binding by tunicamycin or castanospermine indicates the importance of N-linked oligosaccharides for it. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that during an initial stage in the biogenesis, the 160-kDa gB precursor was first synthesized as a fully reduced form and rapidly converted to an oxidized form, with a half-time of 18 min. Both forms of the gB precursor could bind to calnexin. The kinetics of the conversion from the fully reduced to the oxidized form coincided with that of dissociation of the 160-kDa gB precursor from calnexin, suggesting that the two steps are closely related.  相似文献   

3.
The post-translational processing and maturation of the receptor for IgE (Fc epsilon R) on murine hybridoma B cells were studied to determine the carbohydrate content and the importance of processing events in cell surface expression and ligand (IgE) binding ability. Endo and exoglycosidase treatment demonstrated that the mature receptor is composed of two to three complex-type N-linked oligosaccharides and contains sialic acid. Pulse-chase experiments indicated that the receptor is synthesized as a 44,000 dalton precursor that begins to be processed by 1 hr to the mature 49,000 dalton form, and the latter is expressed at the cell surface by 2 hr. It was determined that the processing included the conversion of N-linked oligosaccharides to the complex type as well as an additional processing event, because in the presence of tunicamycin, the receptor is synthesized as a 36,000 dalton precursor that is processed to a 38,000 dalton species. Analysis of the effects of tunicamycin treatment and endo F digestion on soluble Fc epsilon R isolated from cell supernatants demonstrated the existence of several m.w. species of Fc epsilon R fragments, and indicated that only the higher m.w. fragments were N-glycosylated. The use of several inhibitors of the N-linked carbohydrate processing pathway demonstrated that the addition of core N-linked side-chains, but not their processing to the complex type, is required for cell surface expression of Fc epsilon R. Also, processing of N-linked carbohydrate is not required for ligand binding activity. Finally, IgE affinity chromatography indicated that the 49,000 and 38,000 dalton (tunicamycin) Fc epsilon R bind IgE more effectively than their precursor forms, 44,000 and 36,000 daltons, respectively, indicating that a processing event independent of N-linked glycosylation is necessary for optimal ligand binding activity.  相似文献   

4.
Major polypeptides from a human oral spirochete Treponema denticola ATCC 33520 were examined to demonstrate their ability to bind to human plasma fibronectin by immunoblot analysis. Of three main polypeptides separated on sodium dodecyl sulfate polyacrylamide gels 53,000-daltons (53-kDa) and 72-kDa surface antigenic proteins and a 38-kDa axial flagellar protein showed the ability to bind to fibronectin, suggesting that fibronectin on host cells can mediate cytoadherence of T. denticola by its binding to the surface proteins or the exposed 38-kDa axial flageller protein.  相似文献   

5.
6.
Transport and metabolism of 5'-nucleotidase in a rat hepatoma cell line   总被引:3,自引:0,他引:3  
The biosynthesis of the ectoenzyme 5'-nucleotidase in the rat hepatoma cell line H4S has been studied by pulse-labeling with [35S]methionine and subsequent immunoprecipitation of the cell lysate. 5'-Nucleotidase is a membrane glycoprotein with an apparent molecular mass on SDS-gels of 72 kDa. The enzyme is initially synthesized as a 68-kDa precursor which is converted to the mature 72-kDa form in 15-60 min (t1/2 = 25 min). The molecular mass of the unglycosylated enzyme is approximately 58 kDa. Culturing the cells in the presence of varying concentrations of tunicamycin, an inhibitor of N-glycosylation, revealed six species of 5'-nucleotidase after sodium dodecyl sulfate/polyacrylamide electrophoresis. This indicates the presence of five N-linked oligosaccharide chains accounting for the difference between the 58-kDa polypeptide backbone and the 68-kDa species. The 68-kDa precursor is susceptible to cleavage by endo-beta-N-acetylglycosaminidase H; the 72-kDa mature protein is converted to several bands upon this treatment. This result indicates that part of 5'-nucleotidase keeps one or two high-mannose or hybrid chains in the mature form, even after prolonged pulse-chase labeling. The newly synthesized mature enzyme reaches the cell surface after 20-30 min. The half-life of 5'-nucleotidase is about 30 h in H4S cells. No immunoprecipitable 5'-nucleosidase is released into the culture medium.  相似文献   

7.
E-cadherin is a Ca2+-dependent cell-cell adhesion molecule identified as a glycoprotein with a molecular weight (MW) of 124,000. To study the role of the sugar moieties of this adhesion molecule, we tested the effect of tunicamycin on aggregation mediated by E-cadherin of teratocarcinoma cells. Immunoblot analysis using a monoclonal antibody to E-cadherin showed that in cells treated with tunicamycin this adhesion molecule is converted into two forms with MW of 118,000 and 131,000. The smaller one was exposed on the cell surface and showed a trypsin sensitivity characteristic to E-cadherin, suggesting that this is the peptide moiety of E-cadherin whose glycosylation with N-linked oligosaccharides was blocked by tunicamycin. The larger one was not removed by trypsin treatment of cells, suggesting an intracellular location. These tunicamycin-treated cells aggregated in a Ca2+-dependent manner, and the aggregation was inhibited by a monoclonal antibody to E-cadherin. These results suggested that N-linked oligosaccharides are not involved in the functional sites of this adhesion molecule.  相似文献   

8.
The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation.  相似文献   

9.
Normal and virally transformed mouse (3T3) fibroblasts were treated with tunicamycin, a fungal antibiotic that specifically inhibits the synthesis of peptidyl asparaginyl-linked oligosaccharides. All cell lines exhibited changes in cell surface morphology, surface-associated proteins and adhesion to the culture plate in the presence of tunicamycin. Scanning electron microscopy (SEM) revealed that treated fibroblasts assumed a spherical shape and were partially detached from the substratum. In addition, the 3T3 cells showed numerous cell surface ruffles. Tunicamycin-treated cells exhibited no marked ultrastructural changes when compared with control cells. There were indications, however, that the rough endoplasmic reticulum was dilated and that there were fewer membrane-bound ribosomes in treated 3T3 cells. Surface iodination of pretrypsinized tunicamycin-treated cells, followed by analysis of the labeled proteins on sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, showed a marked reduction in a cell surface protein, identical or similar to fibronectin. Both tunicamycin-treated 3T3 and transformed 3T3 cells demonstrated a reduction in plating efficiency as shown by attachment assays of viable cells. In addition, treated cells showed a reduction in adhesiveness and a delay in spreading. The latter changes were more pronounced in the virally transformed cell lines. These findings suggest that cell surface glycoproteins, including fibronectin, play a role in determining the surface morphology and adhesive properties of cells.  相似文献   

10.
The human multipotential hematopoietic cell line K562 expresses fibronectin receptor (FNR) subunits of 160 kDa (alpha chain) and 120 kDa (beta chain). Treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) led to reduced binding of K562 to immobilized fibronectin (FN), although treated cells expressed 10-fold more cell surface FNR than untreated cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis confirmed this and showed altered electrophoretic mobilities of FNR subunits from TPA-treated cells. TPA treatment affected N-linked glycosylation, as tunicamycin treatment of K562 cells abolished differences in FNR mobility. Sialidase treatment of FNR immunoprecipitates minimized and sialidase treatment of intact cells eliminated these mobility differences between subunits from control and TPA-treated cells. Reduced sialylation of FNR from TPA-treated cells was further demonstrated by chromatography with bead-coupled lectins and by the greater negative charge of untreated K562 FNR subunits in two-dimensional isoelectric focusing-polyacrylamide gel electrophoresis. A relationship between reduced FNR sialylation and reduced FN binding was suggested by adhesion assays of sialidase-treated K562 which showed that desialylation of cell surface FNR was associated with decreased cell adhesion. Thus, TPA treatment reduces the function, increases the expression, and alters the structure of K562 FNR, and these changes appear to involve FNR sialylation.  相似文献   

11.
Binding of fibronectin to substrate-attached cells and to Staphylococcus aureus is mediated by the amino-terminal 70-kDa portion of fibronectin. The 70-kDa amino-terminus is composed of nine type I and two type II internal homology units, each containing two intrachain disulfide bonds. The exact structural features of the 70-kDa amino-terminus that are necessary for binding to cells and bacteria are not known. We characterized a recombinant 70-kDa protein from the amino-terminus of rat fibronectin using a baculovirus expression system. Recombinant 70-kDa (r70kDa) protein was easily purified in high amounts from the conditioned medium by affinity chromatography on gelatin-agarose. Secretion was much less when N-linked glycosylation was blocked by tunicamycin. Like the native fragment, the r70kDa protein contains intrachain disulfide bonds. In addition, the r70kDa protein was indistinguishable from the nonrecombinant 70-kDa fragment in its ability to compete for binding sites on fibroblasts and S. aureus. Thus, the r70kDa protein retains the important functional characteristics of the native fragment. This expression system is well adapted to studying the structural features important for the interaction of 70-kDa protein with cells.  相似文献   

12.
The leukocyte integrin alpha 4 beta 1 (VLA-4, CD49d/CD29) is a receptor for the extracellular matrix protein fibronectin and the endothelial adhesion protein VCAM-1. We have analyzed the biosynthesis and post-translational modifications of the two subunits of this receptor complex. The alpha 4 subunit was initially synthesized as a single-chain polypeptide that underwent the formation of complex endoglycosidase H-resistant oligosaccharide side chains and which could be proteolytically cleaved into two noncovalently associated fragments. The level and rate of alpha 4 subunit cleavage was dependent on the cell studied. The T cell tumor line HPB-ALL expressed both intact and fragmented alpha 4 on the cell surface. The interleukin-2-dependent natural killer line NK 3.3 and long term interleukin-2-dependent activated T lymphocytes cleaved the alpha 4 polypeptide earlier and more efficiently than did HPB-ALL cells and did not have detectable levels of intact alpha 4 on the cell surface. The proteolysis of alpha 4 was blocked by treating cells with either the lysosomotrophic amine NH4Cl or the carboxylic ionophore monensin. The presence of complex N-linked oligosaccharides did not seem to be necessary for alpha 4 cleavage or for binding of the alpha 4 beta 1 complex to a synthetic peptide corresponding to the binding site for this receptor on fibronectin.  相似文献   

13.
The adenosine deaminase-binding protein has previously been localized to the cell surface of human fibroblasts (Andy, R. J., and Kornfeld, R. (1982) J. Biol. Chem. 257, 7922-7925). In this study we examine the biosynthesis of binding protein in human fibroblasts, human hepatoma HepG2 cells, and a human kidney tumor cell line. Binding protein immunoprecipitated from radioiodinated detergent-extracted fibroblast membranes has a molecular weight of 120,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An additional band of Mr 100,000 is also present which we believe is a result of proteolysis of the 120,000 band. Purified soluble kidney binding protein has an Mr of 112,000. Binding protein from fibroblasts pulse-labeled with [35S]methionine for 15 min migrates as a 110-kDa band on sodium dodecyl sulfate-polyacrylamide gels. Within 30-60 min of chase, the intensity of the 110-kDa band is diminished, and a 120-kDa band has appeared. Binding protein reaches the cell surface of fibroblasts within 30-60 min of chase. The same results are obtained with the other cell lines studied. Thus, binding protein is initially synthesized as a precursor of 110 kDa which chases into a 120-kDa mature form. The shift of 10 kDa is probably due to processing of its oligosaccharide chains since soluble kidney-binding protein contains 7-9 complex N-linked chains. Upon endoglycosidase H treatment, the 110,000 precursor shifts to a Mr of 89,000 while the 120,000 mature band shifts to 115,000, consistent with the presence of 7-9 high mannose chains on the precursor and 1-2 high mannose chains on the mature form. These results and the presence of complex N-linked chains on binding protein were confirmed by lectin affinity chromatography of glycopeptides derived from [2-3H]mannose-labeled binding protein. Analysis of [6-3H]glucosamine-labeled binding protein indicates the presence of 1 sialic acid residue per chain.  相似文献   

14.
The T-cell growth factor (TCGF) receptor on phytohemagglutinin-activated normal peripheral blood T-cells is characterized as a glycoprotein with an apparent Mr = 55,000 that contains N-linked and O-linked carbohydrate with only approximately 33,000 daltons of peptide structure (p33) as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There are two N-linked glycosylated intermediate precursor forms (apparent Mr = 35,000 (p35) and 37,000 (p37]. This receptor differs from the TCGF receptor on HUT-102B2 cells (apparent Mr = 50,000) because of differences in post-translational processing. Experiments with the carboxylic ionophore monensin demonstrate blockade of the transition of the p35 and p37 receptor precursor forms to the mature receptor, presumably secondary to inhibition of Golgi-associated receptor processing. We identify the primary translation product of TCGF receptor mRNA as intermediate in size between the p33 and the p35/p37 forms. We further demonstrate that the p33, p35, and p37 precursor forms, but not the primary translation product, are all capable of binding TCGF. Thus, the removal of the signal peptide and/or conformational changes of the primary translation product are necessary for ligand binding; however, the extensive post-translational modifications are not. Lastly, we demonstrate that at least some TCGF receptors are phosphorylated and sulfated, and that TCGF receptors on phytohemagglutinin-activated normal T-cells are more heavily sulfated than those on HUT-102B2 cells.  相似文献   

15.
The biosynthetic pathway of tremerogen A-10, a polyisoprenyl peptide mating pheromone produced by mating type AB cells of the heterobasidiomycetous yeast Tremella mesenterica, was investigated by immunological techniques with antibody specific to the peptide moiety of the pheromone. Using the biological assay and the radioimmunoassay of the pheromone and its related substances, it was suggested that the peptide is synthesized near the end of logarithmic phase of growth with a temporary accumulation of precursors in the cell. The precursors initially appeared in membrane-bound form and were subsequently converted to soluble forms prior to the secretion. The pheromone acquired its biological activity during the secretion. In the presence of tunicamycin or compactin, pheromone production was blocked with accumulation of membrane-bound precursors. Monensin, however, blocked pheromone production with accumulation of soluble precursors. The molecular species which accumulated in the presence of the antibiotics were analyzed by immunoprecipitation followed by sodium dodecyl sulfate/urea/polyacrylamide gel electrophoresis. In the absence of the inhibitors, membrane-bound precursors with molecular masses of 28 kDa, 12 kDa, 7.8 kDa and 2.8 kDa were found. The precursors which accumulated in the presence of tunicamycin and compactin were the 12-kDa and 28-kDa species, respectively. The results suggested that membrane-bound very high-molecular-mass precursors were initially formed and their extensive modifications, including glycosylation, farnesylation and proteolytic digestion, occur in the membrane. Based on these data, a biosynthetic and secretory pathway was postulated.  相似文献   

16.
Several cell-mediated activities for the amino terminus of fibronectin have been documented. In the present study we describe a macrophage surface protein with binding activity directed to the amino terminus of the fibronectin molecule. The binding of a 29-kDa amino-terminal fibronectin fragment to macrophages reached steady state by 30 min and was half-maximal at approximately 2 x 10(-8) M. This binding was specifically inhibited by excess unlabeled 29-kDa fragment or intact fibronectin but not by a 180-kDa fibronectin fragment which lacks the amino terminus. Competitive binding studies of the 70-kDa amino-terminal fibronectin fragment to macrophages revealed a single binding site with KD = 7.14 x 10(-8) M and approximately 8 x 10(4) binding sites/cell. Radiolabeled surface proteins extracted from rat peritoneal macrophages and from the human U937 cell line were applied to an affinity column comprised of the 70-kDa amino-terminal fragment of fibronectin coupled to a solid support. A single trypsin-sensitive radiolabeled protein of 67 kDa, from either cell type, was eluted from this column with urea. This protein showed no immunologic identity with fibronectin, fibrin(ogen), or albumin. The 67-kDa protein exhibited identical apparent molecular weight under reducing and nonreducing conditions, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. We have localized the fibronectin binding activity of this protein to within the 29-kDa amino-terminal domain of fibronectin. The 67-kDa protein eluted from the 70-kDa column failed to bind to a column comprised of the 45-kDa gelatin-binding fragment of fibronectin. Additionally, the 67-kDa protein was specifically eluted from the 70-kDa column by the 29-kDa amino-terminal fragment but not by the 45-kDa gelatin-binding fragment. These data suggest that this 67-kDa protein is a macrophage cell surface binding protein for the amino terminus of fibronectin.  相似文献   

17.
The human cytomegalovirus (HCMV) gCIII complex contains glycoprotein H (gH; gpUL75), glycoprotein L (gL; gpUL115), and glycoprotein O (gO; gpUL74). To examine how gH, gL, and gO interact within HCMV-infected cells to assemble the tripartite complex, pulse-chase experiments were performed. These analyses demonstrated that gH and gL associate by the end of the pulse period to form a disulfide dependent gH-gL complex. Subsequently, the gH-gL complex interacts with a 100-kDa precursor form of gO to form a 220-kDa precursor of the mature gH-gL-gO complex that contains a 125-kDa form of gO. The 220-kDa precursor complex (pgCIII) was sensitive to treatment with endoglycosidase H (endo H), while the mature gCIII complex was essentially resistant to digestion with this enzyme, suggesting that formation of pgCIII complex occurs in the endoplasmic reticulum (ER) and is processed to mature gH-gL-gO (gCIII) in a post-ER compartment. While the N-linked glycans on the 100-kDa form of gO were modified to endo H-resistant states as the 125-kDa gO formed, additional posttranslational modifications were detected on gO. These processing alterations were non-N-linked oligosaccharide modifications that could not be accounted for by phosphorylation or by O-glycosylation of the type sensitive to O-glycanase. Of gH, gL, gO, and the various complexes that they form, only the mature form of the complex was detectable at the infected cell membrane, as judged by surface biotinylation studies.  相似文献   

18.
Antibodies to phosphotyrosine were used in immunoprecipitation experiments to determine if post-translational modification of the platelet-derived growth factor (PDGF) receptor was required for the acquisition of ligand-induced tyrosine kinase activity. In intact Balb/c 3T3 fibroblasts, only the fully processed 180-kDa receptor was activated (tyrosine-phosphorylated) by PDGF. In a cell-free assay, however, the tyrosine-phosphorylated forms of the 160- and 145-kDa PDGF receptor precursors were also detected. These activated precursors were immunoprecipitated after brief (5-15 min) metabolic labeling periods. Thus the receptor could bind PDGF and induce tyrosine kinase activity shortly after translation. Unlike the mature form of the receptor, the 160-kDa receptor precursor was resistant to digestion with endo-alpha-N-acetylgalactosaminidase and thus did not contain O-linked oligosaccharides. Since this receptor precursor was activated by PDGF in the cell-free assay, the addition of O-linked sugars must not be necessary for ligand binding activity. Incubation of cells with tunicamycin completely inhibited N-linked glycosylation of the PDGF receptor. Nevertheless, PDGF still induced tyrosine phosphorylation of the 130-kDa aglycoreceptor in lysates of tunicamycin-treated cells. Thus, the addition of N-linked oligosaccharides was also not required for receptor activation. These findings show that the PDGF receptor acquired the ability to be activated by ligand cotranslationally or immediately after translation and that the addition of N- or O-linked oligosaccharides was not required for ligand binding and tyrosine kinase activities.  相似文献   

19.
Apically secreted 80-kDa glycoprotein (gp 80) from Madin-Darby canine kidney cells was found to be immunoprecipitated by the polyclonal antiserum against fibronectin or a monoclonal antibody specific for the fibronectin C-terminal fibrin binding domain. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), gp 80 migrated as a doublet band under nonreducing conditions. Under reducing conditions, gp 80 was resolved into three distinct bands, respectively of 45-, 40-, and 35-kDa molecular mass. Analysis by two-dimensional SDS-PAGE revealed that gp 80 exists in two molecular forms: one consisting of a 45-kDa subunit and a 40-kDa subunit, and one consisting of a 45-kDa subunit and a 35-kDa subunit. V-8 protease mapping indicated the 40 and 35-kDa subunits as being of the same homologous group and also as bearing partial homology to the 45-kDa subunit. Radioactive labeling revealed that labeled gp 80 was subjected to covalent modifications by sulfation and phosphorylation. Sulfate analysis showed that [35S]sulfate-labeled gp 80 contained ca. 2.45 +/- 0.07% tyrosine-bound [35S]sulfate with the rest being presumably carbohydrate-bound. [32P]-Phosphate-labeled gp 80, on the other hand, was found to contain serine-O-phosphate as the predominant phosphorylated amino acid residue. Employing the affinity gel fractionation technique, it was shown that gp 80 exhibited binding affinities toward heparin and fibrin. Binding of gp 80 to heparin-agarose or fibrin-Sepharose, however, was inhibited in the presence of added fibronectin or the monoclonal antibody. Tryptic peptide mapping revealed common peptide spots between fibronectin and the three subunits of gp 80. Furthermore, Western blot analysis showed that fibronectin could be recognized and bound by anti-gp 80 antibodies. These results indicate that gp 80 bears both structural and functional similarities to the C-terminal portion of the fibronectin molecule.  相似文献   

20.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号