首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In developing pea cotyledons, storage proteins are sorted viadense vesicles into the protein storage vacuole. Formation ofthese unique transport vesicles is characterized by aggregationof their cargo proteins. Protein sorting into dense vesiclesis pH dependent. In order to gain insight into the molecularbasis of storage protein sorting, a membrane binding assay wasdeveloped which allows for a detailed biochemical analysis ofbinding events. Employing this assay it was possible to showthat storage proteins bind in a pH-dependent manner to the membranesof the secretory pathway with a pH optimum in the range of thelumenal pH of the Golgi cisternae. Through reconstitution experiments,it was possible to demonstrate further that this recruitmentoccurs via the interaction of peripheral rather than intrinsicmembrane proteins. Results of co-immunoprecipitation experimentspoint to interactions between different storage proteins inthe secretory system. These results are discussed in terms ofthe aggregation-mediated sorting of storage proteins into maturingdense vesicles. Key words: Dense vesicles, Golgi apparatus, legumin, pea, receptor, sorting Received 22 January 2008; Revised 22 January 2008 Accepted 23 January 2008  相似文献   

2.
Using immunogold electron microscopy, we have investigated the relative distribution of two types of vacuolar sorting receptors (VSR) and two different types of lumenal cargo proteins, which are potential ligands for these receptors in the secretory pathway of developing Arabidopsis embryos. Interestingly, both cargo proteins are deposited in the protein storage vacuole, which is the only vacuole present during the bent-cotyledon stage of embryo development. Cruciferin and aleurain do not share the same pattern of distribution in the Golgi apparatus. Cruciferin is mainly detected in the cis and medial cisternae, especially at the rims where storage proteins aggregate into dense vesicles (DVs). Aleurain is found throughout the Golgi stack, particularly in the trans cisternae and trans Golgi network where clathrin-coated vesicles (CCVs) are formed. Nevertheless, aleurain was detected in both DV and CCV. VSR-At1, a VSR that recognizes N-terminal vacuolar sorting determinants (VSDs) of the NPIR type, localizes mainly to the trans Golgi and is hardly detectable in DV. Receptor homology-transmembrane-RING H2 domain (RMR), a VSR that recognizes C-terminal VSDs, has a distribution that is very similar to that of cruciferin and is found in DV. Our results do not support a role for VSR-At1 in storage protein sorting, instead RMR proteins because of their distribution similar to that of cruciferin in the Golgi apparatus and their presence in DV are more likely candidates. Aleurain, which has an NPIR motif and seems to be primarily sorted via VSR-At1 into CCV, also possesses putative hydrophobic sorting determinants at its C-terminus that could allow the additional incorporation of this protein into DV.  相似文献   

3.
Many soluble plant vacuolar proteins are sorted away from secreted proteins into small vesicles at the trans-Golgi network by transmembrane cargo receptors. Cleavable vacuolar sorting signals include the NH(2)-terminal propeptide (NTPP) present in sweet potato sporamin (Spo) and the COOH-terminal propeptide (CTPP) present in barley lectin (BL). These two proteins have been found to be transported by different mechanisms to the vacuole. We examined the ability of the vacuolar cargo receptor AtELP to interact with the sorting signals of heterologous and endogenous plant vacuolar proteins in mediating vacuolar transport in Arabidopsis thaliana. AtELP extracted from microsomes was found to interact with the NTPPs of barley aleurain and Spo, but not with the CTPPs of BL or tobacco chitinase, in a pH-dependent and sequence-specific manner. In addition, EM studies revealed the colocalization of AtELP with NTPP-Spo at the Golgi apparatus, but not with BL-CTPP in roots of transgenic Arabidopsis plants. Further, we found that AtELP interacts in a similar manner with the NTPP of the endogenous vacuolar protein AtALEU (Arabidopsis thaliana Aleu), a protein highly homologous to barley aleurain. We hypothesize that AtELP functions as a vacuolar sorting receptor involved in the targeting of NTPP-, but not CTPP-containing proteins in Arabidopsis.  相似文献   

4.
Secretion, endocytosis and transport to the lytic compartment are fundamental, highly coordinated features of the eukaryotic cell. These intracellular transport processes are facilitated by vesicles, many of which are small (100 nm or less in diameter) and coated on their cytoplasmic surface. Research into the structure of the coat proteins and how they interact with the components of the vesicle membrane to ensure the selective packaging of the cargo molecules and their correct targeting, has been quite extensive in mammalian and yeast cell biology. By contrast, our knowledge of the corresponding types of transport vesicles in plant cells is limited. Nevertheless, the available data indicate that a considerable homology between plant and non-plant coat polypeptides exists, and it is also suggestive of a certain similarity in the mechanisms underlying targeting in all eukaryotes. In this article we shall concentrate on three major types of transport vesicles: clathrin-coated vesicles, COP-coated vesicles, and dense vesicles, the latter of which are responsible for the transport of vacuolar storage proteins in maturing legume cotyledons. For each we will summarize the current literature on animal and yeast cells, and then present the relevant data derived from work on plant cells. In addition, we briefly review the evidence in support of the SNARE hypothesis, which explains how vesicles find and fuse with their target membrane.  相似文献   

5.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

6.
Variation in legumin, the major seed storage protein of Vicia faba was investigated in different (primitive and cultivated) varieties of V. faba and in other primitive Vicia species. Qualitative variation in legumin subunit patterns on gel electrophoresis was less within the species V. faba than the variation between Vicia species. However, the large seeded modern V. faba cultivars showed much increased levels of the ‘main’ legumin subunit pairs. Analyses of amino acid composition, and nitrogen and sulphur content did not show systematic variation between the samples tested, and suggested that breeding and selection had not decreased protein content or nutritional quality. It was concluded that the heterogeneities of legumin genes in the Vicia species examined are comparable, and that selection for a large-seeded phenotype in V. faba has had the effect of increasing the expression of a subset of legumin genes, those encoding the ‘main’ subunit pairs.  相似文献   

7.
One of the main seed storage proteins of Norway spruce ( Picea abies ), is a salt-soluble protein with an average molecular mass of 42 kDa. This protein was localized by immunocytochemical methods in ultrathin sections of megagametophytes active in storage protein synthesis, as analyzed by SDS-PAGE. The megagametophyte in spruce starts accumulating storage materials, proteins and lipids, as the young embryo grows into the gametophytic tissue. It then continues to accumulate these storage products throughout seed development (Hakman 1993). Megagametophytes at an early stage of storage protein accumulation were chosen in this study for analysing the likely transport pathway of the proteins, since only a small amount of lipid had yet accumulated in the cells, and cell organelles were still easy to distinguish. An antibody against the 42 kDa storage protein showed very good reactivity with the 42 kDa protein in immunoblot experiments with total protein extracts from megagametophytes and embryos. In ultrathin sections of the megagametophyte, the antibodies were preferentially localized in the lumen of Golgi cisterna, in Golgi-associated vesicles, protein deposits close to the vacuolar membrane and in protein storage vacuoles (protein bodies). These observations indicate that the transport is mediated by the Golgi apparatus.
Also, proteins present in storage vacuoles in mature zygotic and somatic embryos showed intense labelling with these antibodies in ultrathin sections.  相似文献   

8.
A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST‐GFP, to other organelles. GOLD36 showed partial distribution of ST‐GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein‐like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk‐flow marker to the cell surface was also compromised. Using a combination of classical mapping and next‐generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus ( At1g54030 ). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock‐out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post‐ER compartments and suggest that its export from the ER is a requirement to ensure steady‐state maintenance of the organelle’s organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.  相似文献   

9.
Two different gene families have been proposed to act as sorting receptors for vacuolar storage cargo in plants: the vacuolar sorting receptors (VSRs) and the receptor homology‐transmembrane‐RING H2 domain proteins (RMRs). However, functional data on these genes is scarce and the identity of the sorting receptor for storage proteins remains controversial. Through a genetic screen we have identified the mtv2 mutant, which is defective in vacuolar transport of the storage cargo VAC2 in shoot apices. Map‐based cloning revealed that mtv2 is a loss of function allele of the VSR4 gene. We show that VSR1, VSR3 and VSR4, but not the remaining VSRs or RMRs, participate in vacuolar sorting of VAC2 in vegetative tissues, and 12S globulins and 2S albumins in seeds, an activity that is essential for seedling germination vigor. Finally, we demonstrate that the functional diversification in the VSR family results from divergent expression patterns and also from distinct sorting activities of the family members.  相似文献   

10.
Summary The formation of three types of vesicles in the oomycetePhytophthora cinnamomi was investigated using ultrastructural and immunocytochemical techniques. All three vesicles are synthesised at the same time; one type serves a storage role; the others undergo regulated secretion. A monoclonal antibody Lpv-1 that is specific for glycoproteins contained in the storage vesicles labelled the endoplasmic reticulum (ER), elements in the transition region between ER and Golgi stack, and cis, medial and trans Golgi cisternae. Cpa2, a monoclonal antibody specific for glycoproteins contained within secretory dorsal vesicles labelled the transition region, cis cisternae and a trans-Golgi network. Vesicles possessing a structure characteristic of mature secretory ventral vesicles were observed in close association with the trans face of Golgi stacks. The results suggest that all three vesicles are formed by the Golgi apparatus. Double immunogold labelling with Lpv-1 and Cpa-2 showed that these two sets of glycoproteins occurred within the same Golgi cisternae, indicating that both products pass through and are sorted concurrently within a single Golgi stack.  相似文献   

11.
Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein-endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)-which shares structural characteristics with VAP-33, a 33-kD protein from Aplysia californica which was shown to interact with the synaptic protein VAMP. The transmembrane topology of the 30-kD ERG30 corresponds to a type II integral membrane protein, whose cytoplasmic NH(2) terminus contains a predicted coiled-coil motif. We localized ERG30 to the ER and to pre-Golgi intermediates by biochemical and immunocytochemical methods. Consistent with a role in vesicular transport, anti-ERG30 antibodies specifically inhibit intra-Golgi transport in vitro, leading to significant accumulation of COPI-coated vesicles. It appears that ERG30 functions early in the secretory pathway, probably within the Golgi and between the Golgi and the ER.  相似文献   

12.
A vacuolar cysteine proteinase, designated SH-EP, is expressed in the cotyledon of germinated Vigna mungo seeds and is responsible for the degradation of storage proteins. SH-EP is a characteristic vacuolar proteinase possessing a COOH-terminal endoplasmic reticulum (ER) retention sequence, KDEL. In this work, immunocytochemical analysis of the cotyledon cells of germinated V. mungo seeds was performed using seven kinds of antibodies to identify the intracellular transport pathway of SH-EP from ER to protein storage vacuoles. A proform of SH-EP synthesized in ER accumulated at the edge or middle region of ER where the transport vesicle was formed. The vesicle containing a large amount of proSH-EP, termed KV, budded off from ER, bypassed the Golgi complex, and was sorted to protein storage vacuoles. This massive transport of SH-EP via KV was thought to mediate dynamic protein mobilization in the cotyledon cells of germinated seeds. We discuss the possibilities that the KDEL sequence of KDEL-tailed vacuolar cysteine proteinases function as an accumulation signal at ER, and that the mass transport of the proteinases by ER-derived KV-like vesicle is involved in the protein mobilization of plants.  相似文献   

13.
In nutrient-rich, vegetative conditions, the yeast Saccharomyces cerevisiae transports a resident protease, aminopeptidase I (API), to the vacuole by the cytoplasm to vacuole targeting (Cvt) pathway, thus contributing to the degradative capacity of this organelle. When cells subsequently encounter starvation conditions, the machinery that recruited precursor API (prAPI) also sequesters bulk cytosol for delivery, breakdown, and recycling in the vacuole by the autophagy pathway. Each of these overlapping alternative transport pathways is specifically mobilized depending on environmental cues. The basic mechanism of cargo packaging and delivery involves the formation of a double-membrane transport vesicle around prAPI and/or bulk cytosol. Upon completion, these Cvt and autophagic vesicles are targeted to the vacuole to allow delivery of their lumenal contents. Key questions remain regarding the origin and formation of the transport vesicle. In this study, we have cloned the APG9/CVT7 gene and characterized the gene product. Apg9p/Cvt7p is the first characterized integral membrane protein required for Cvt and autophagy transport. Biochemical and morphological analyses indicate that Apg9p/Cvt7p is localized to large perivacuolar punctate structures, but does not colocalize with typical endomembrane marker proteins. Finally, we have isolated a temperature conditional allele of APG9/CVT7 and demonstrate the direct role of Apg9p/Cvt7p in the formation of the Cvt and autophagic vesicles. From these results, we propose that Apg9p/Cvt7p may serve as a marker for a specialized compartment essential for these vesicle-mediated alternative targeting pathways.  相似文献   

14.
Fragmentation of the mammalian Golgi apparatus during mitosis requires the phosphorylation of a specific subset of Golgi-associated proteins. We have used a biochemical approach to characterize these proteins and report here the identification of golgin-84 as a novel mitotic target. Using cryoelectron microscopy we could localize golgin-84 to the cis-Golgi network and found that it is enriched on tubules emanating from the lateral edges of, and often connecting, Golgi stacks. Golgin-84 binds to active rab1 but not cis-Golgi matrix proteins. Overexpression or depletion of golgin-84 results in fragmentation of the Golgi ribbon. Strikingly, the Golgi ribbon is converted into mini-stacks constituting only approximately 25% of the volume of a normal Golgi apparatus upon golgin-84 depletion. These mini-stacks are able to carry out protein transport, though with reduced efficiency compared with a normal Golgi apparatus. Our results suggest that golgin-84 plays a key role in the assembly and maintenance of the Golgi ribbon in mammalian cells.  相似文献   

15.
Glycinin (11S) and beta-conglycinin (7S) are major storage proteins in soybean (Glycine max L.) seeds and accumulate in the protein storage vacuole (PSV). These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the PSV by vesicles. Electron microscopic analysis of developing soybean cotyledons of the wild type and mutants with storage protein composition different from that of the wild type showed that there are two transport pathways: one is via the Golgi and the other bypasses it. Golgi-derived vesicles were observed in all lines used in this study and formed smooth dense bodies with a diameter of 0.5 to several micrometers. ER-derived protein bodies (PBs) with a diameter of 0.3-0.5 microm were observed at high frequency in the mutants containing higher amount of 11S group I subunit than the wild type, whereas they were hardly observed in the mutants lacking 11S group I subunit. These indicate that pro11S group I may affect the formation of PBs. Thus, the composition of newly synthesized proteins in the ER is important in the selection of the transport pathways.  相似文献   

16.
The initial biochemical characterization of the soybean sucrose-binding protein, GmSBP, within our lab and others produced several incongruous characteristics that required a re-characterization of GmSBP via sequence homology, cell biology, immunolocalization, and semi-quantitative analysis. The GmSBP proteins share amino acid sequence homology as well as putative structural homology with globulin-like seed storage proteins. A comparison to the major soybean seed storage proteins, glycinin and -conglycinin established several storage protein-like characteristics for GmSBP. All three proteins were present in a prevacuolar compartment and protein storage vacuole. All three proteins increased in expression during seed development and are remobilized during germination. Quantitatively, the relative concentrations of GmSBP, -conglycinin (/ subunits), and glycinin (acidic subunits) indicated that GmSBP contributes 19-fold less to the stored nitrogen. The quantitative differences between GmSBP and glycinin may be attributed to the unconserved order and spacing of cis-acting regulatory elements present within the promoter regions. Ultimately, GmSBP is transported to the mature protein storage vacuole. The biological function of GmSBP within the protein storage vacuole remains uncertain, but its localization is a remnant of its evolutionary link to a globulin-like or vicilin-like ancestor that gave rise to the 7S family of storage proteins.  相似文献   

17.
The tridimensional structure of the Golgi apparatus has been studied in the absorptive cells of the mouse colon by means of reduced osmium postfixation and phosphatase cytochemistry. In thick sections of tissue impregnated with osmium tetroxide or treated with a technique to demonstrate TPPase activity, the Golgi formed a continuous ribbon-like structure capping the upper pole of the nucleus. Along the longitudinal axis of this ribbon, compact zones made up of superposed flattened saccules alternated with less compact zones which consisted of highly perforated saccules or bridging anastomosed tubules. In the cis-trans axis, the following elements were observed: (1) a cis element consisting of a continuous osmiophilic tubular network; (2) two or three subjacent elements selectively perforated by wells; (3) a trans compartment made up of two or three TPPase-reactive sacculotubular elements, some showing a "peeling-off" configuration. In some regions, the first flattened saccule of this trans compartment displayed discrete ovoid dilatations, located in compact zones and containing a dense granulofibrillar material; in the subjacent elements this material was seen concentrated in nodular swellings, at the intersection of the meshes of anastomosed membranous tubules. 100-300 nm vesicles containing a similar dense granulofilamentous material were observed in the trans Golgi zone and interspersed in the supranuclear cytoplasm between the Golgi zone and the apical surface of the cell. Smaller vesicles 80-100 nm in diameter containing a fine dusty material were also seen in proximity. These morphological observations suggested that at least two kinds of material were segregated in the saccules of the trans compartment and packaged in vesicles of two class sizes that detached from the Golgi stack on its trans aspect.  相似文献   

18.
Summary The vacuole is often termed the lytic compartment of the plant cell. The yeast cell also possesses a vacuole containing acid hydrolases. In animal cells these enzymes are localized in the lysosome. Recent research suggests that there is good reason to regard these organelles as homologous in terms of protein transport. Although sorting motifs for the recognition of vacuolar proteins within the endomembrane system differ between the three organelles, there is an underlying similarity in targeting determinants in the cytoplasmic tails of Golgi-based receptors. In all three cases these determinants appear to interact with adaptins of clathrin-coated vesicles which ferry their cargo first of all to an endosomal compartment. The situation in sorting and targeting of plant vacuolar proteins is complicated by the fact that storage and lytic vacuoles may exist together in the same cell. The origin of these two types of vacuole is also a matter of some uncertanity.Abbrevations AP assembly protein - ALP alkaline phosphatase - ARF adenosine diphosphate ribosylation factor - BiP immunoglobulin binding protein - CCV clathrin coated vesicle - CPY carboxypeptidase-Y - DPAP dipeptidyl aminopeptidase - ER endoplasmic reticulum - GApp Golgi apparatus - LAMPs lysosomal associated membrane protein(s) - LAP lysosomal acid phosphatase - LIMPs lysosomal integral membrane protein(s) - MPRs mannosyl 6-phosphate receptors - MVB multivesicular bodies - NSF N-ethylmaleimide sensitive fusion (protein) - PAT phosphinotricine acetyltransferase - PB protein body - PHA phytohemagglutinin - PM plasma membrane - PSV protein storage vacuole - SNAPs soluble NSF attachment protein(s) - SNAREs SNAP receptor(s) - TGN trans Golgi network - TIP tonoplast integral protein - VPS vacuolar protein sorting - ZIO zinc iodide/osmium  相似文献   

19.
20.
Seed protein profiling of 34 lines of Cucurbita pepo L. from different geographic regions of the world were evaluated for their polypeptide patterns and their phylogenetic relationship with other taxa of the genus Cucurbita. Considerable variations were observed in the polypeptide patterns of various lines on the SDS-polyacrylamide gels under reduced conditions, i.e. seed protein extract with 2-mercaptoethanol. The variations were observed in five different molecular weight regions, i.e. in the range 64–70, 53–60, 30–41, 20–26 and 18–20 kDa. Cluster analysis showed 100% genetic similarity between C. pepo and C. pepo var. pepo whereas it is quite distinct from C. pepo var. texana and C. pepo var. fraterna. On the basis of electrophoretic profiling C. pepo var. texana and C. pepo var. fraterna should be considered as different species and also supports the origin of C. pepo from C. texana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号