首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied. The main result of the mutations was a sharp decrease in the rates of conformational changes required for binding of activating Mg2+ ions, whereas affinity of the enzyme for Mg2+ was not affected. The pH-independent parameters of MgPP(i) hydrolysis, kcat and kcat/Km, have been determined for the mutant PPases. The values of kcat for Gly100Ala and Gly147Val variants were 4 and 25%, respectively, of the value for the native enzyme. Parameter kcat/Km for both mutants was two orders of magnitude lower. Mutation Gly147Val increased pH-independent Km value about tenfold. The study of synthesis of pyrophosphate in the active sites of the mutant PPases has shown that the maximal level of synthesized pyrophosphate was in the case of Gly100Ala twofold, and in the case of Gly147Val fivefold, higher than for the native enzyme. The results reported in this paper demonstrate that the flexibility of the loops where the residues Gly100 and Gly147 are located is necessary at the stages of substrate binding and product release. In the case of Gly100Ala PPase, significant impairment of affinity of enzyme effector site for PP(i) was also found.  相似文献   

2.
Analysis of the conservation of functional residues between yeast and Escherichia coli inorganic pyrophosphatases (PPases) suggested that Asp-97, Glu-98, Asp-102, and Lys-104 are important for the action of E. coli PPase [Lahti, R., Kolakowski, L. F., Heinonen, J., Vihinen, M., Pohjanoksa, K., & Cooperman, B. S. (1990) Biochim. Biophys. Acta 1038, 338-345]. We replaced these four residues by oligonucleotide-directed mutagenesis, giving variant PPases DV97, DE97, EV98, DV102, DE102, KI104, and KR104. PPase variants DV97, DV102, and KI104 had no enzyme activity, whereas PPase variants DE97, EV98, DE102, and KR104 had 22%, 33%, 3%, and 3% of the wild-type PPase activity, respectively. This suggests that Asp-97, Asp-102, and Lys-104 are essential for the catalytic activity of E. coli PPase. PPase variants DV98 and KR104 also had an increased sensitivity to heat denaturation; incubation of these mutant PPases at 75 degrees C for 15 min in the presence of 5 mM magnesium ion decreased the activity to 20% and 1%, respectively, of the initial value while 74% of the activity was observed with wild-type PPase. Furthermore, these thermolabile mutant PPases displayed the most profound conformational changes of the PPase variants examined, as demonstrated by the binding of the fluorescent dye Nile red that monitors the hydrophobicity of protein surfaces. Accordingly, Glu-98 and Lys-104 seem to be important for the structural integrity of E. coli PPase.  相似文献   

3.
Oligonucleotide-directed mutagenesis has been used to replace glycine residues by alanine in neutral protease from Bacillus subtilis. One Gly to Ala substitution (G147A) was located in a helical region of the protein, while the other (G189A) was in a loop. The effects of mutational substitutions on the functional, conformational and stability properties of the enzyme have been investigated using enzymatic assays and spectroscopic measurements. Single substitutions of both Gly147 and Gly189 with Ala residues affect the enzyme kinetic properties using synthetic peptides as substrates. When Gly replacements were concurrently introduced at both positions, the kinetic characteristics of the double mutant were roughly intermediate between those of the two single mutants, and similar to those of the wild-type protease. Both mutants G147A and G189A were found to be more stable towards irreversible thermal inactivation/unfolding than the wild-type species. Moreover, the stabilizing effect of the Gly to Ala substitution was roughly additive in the double mutant G147A/G189A, which shows a 3.2 degrees C increase in Tm with respect to the wild-type protein. These findings indicate that the Gly to Ala substitution can be used as a strategy to stabilize globular proteins. The possible mechanisms of protein stabilization are also discussed.  相似文献   

4.
Excess of Mg2+ ions is known to inhibit the soluble inorganic pyrophosphatases (PPases). In contrast, the mutant Escherichia coli inorganic pyrophosphatase Asp42-->Asn is three times more active than native and retains its activity at high Mg2+ concentration. In this paper, another two mutant variants with Asp42 replaced by Ala or Glu were investigated to characterize the role of Asp42 in catalysis. pH-independent kinetic parameters of MgPPi hydrolysis and the dissociation constants for the activating and inhibitory Mg2+ ions were calculated. It was shown that Mg2+ inhibition of MgPPi hydrolysis by native PPase exhibited uncompetitive kinetics under the saturating substrate concentration. All three substitutions of Asp42 lead to a sharp decrease of inhibitory Mg2+ affinity to the enzyme. These findings allow determination of the sites of inhibitory and substrate Mg2+ ions binding to PPase. Common features of these mutants allow the conclusion that the function of Asp42 is to accurately coordinate the residues implicated in the substrate and the inhibitory Mg2+ ion binding to PPase active site. Structural analysis of PPase complexed with Mg2+ compared with PPase complexed with Mn2+ and reaction products confirms this supposition.  相似文献   

5.
Soluble inorganic pyrophosphatases (PPases) comprise two evolutionarily unrelated families (I and II). These two families have different specificities for metal cofactors, which is thought to be because of the fact that family II PPases have three active site histidines, whereas family I PPases have none. Here, we report the structural and functional characterization of a unique family I PPase from Mycobacterium tuberculosis (mtPPase) that has two His residues (His21 and His86) in the active site. The 1.3-A three-dimensional structure of mtPPase shows that His86 directly interacts with bound sulfate, which mimics the product phosphate. Otherwise, mtPPase is structurally very similar to the well studied family I hexameric PPase from Escherichia coli, although mtPPase lacks the intersubunit metal binding site found in E. coli PPase. The cofactor specificity of mtPPase resembles that of E. coli PPase in that it has high activity in the presence of Mg2+, but it differs from the E. coli enzyme and family II PPases because it has much lower activity in the presence of Mn2+ or Zn2+. Replacements of His21 and His86 in mtPPase with the residues found in the corresponding positions of E. coli PPase had either no effect on the Mg2+- and Mn2+-supported reactions (H86K) or reduced Mg2+-supported activity (H21K). However, both replacements markedly increased the Zn2+-supported activity of mtPPase (up to 11-fold). In the double mutant, Zn2+ was a 2.5-fold better cofactor than Mg2+. These results show that the His residues in mtPPase are not essential for catalysis, although they determine cofactor specificity.  相似文献   

6.
The intestinal fatty acid binding protein is one of a class of proteins that are primarily beta-sheet and contain a large interior cavity into which ligands bind. A highly conserved region of the protein exists between two adjacent antiparallel strands (denoted as D and E in the structure) that are not within hydrogen bonding distance. A series of single, double, and triple mutations have been constructed in the turn between these two strands. In the wild-type protein, this region has the sequence Leu 64/Gly 65/Val 66. Replacing Leu 64 with either Ala or Gly decreases the stability and the midpoint of the denaturation curve somewhat, whereas mutations at Gly 65 affect the stability slightly, but the protein folds at a rate similar to wild-type and binds oleate. Val 66 appears not to play an important role in maintaining stability. All double or triple mutations that include mutation of Leu 64 result in a large and almost identical loss of stability from the wild-type. As an example of the triple mutants, we investigated the properties of the Leu 64 Ser/Gly 65 Ala/Val 66 Asn mutant. As measured by the change in intrinsic fluorescence, this mutant (and similar triple mutants lacking leucine at position 64) folds much more rapidly than wild-type. The mutant, and others that lack Leu 64, have far-UV CD spectra similar to wild-type, but a different near-UV CD spectrum. The folded form of the protein binds oleate, although less tightly than wild-type. Hydrogen/deuterium exchange studies using electrospray mass spectrometry indicate many more rapidly exchangeable amide protons in the Leu 64 Ser/Gly 65 Ala/Val 66 Asn mutant. We propose that there is a loss of defined structure in the region of the protein near the turn defined by the D and E strands and that the interaction of Leu 64 with other hydrophobic residues located nearby may be responsible for (1) the slow step in the refolding process and (2) the final stabilization of the structure. We suggest the possibility that this region of the protein may be involved in both an early and late step in refolding.  相似文献   

7.
Funahashi J  Takano K  Yamagata Y  Yutani K 《Biochemistry》2000,39(47):14448-14456
To evaluate the contribution of the amino acid residues on the surface of a protein to its stability, a series of hydrophobic mutant human lysozymes (Val to Gly, Ala, Leu, Ile, Met, and Phe) modified at three different positions on the surface, which are located in the alpha-helix (Val 110), the beta-sheet (Val 2), and the loop (Val 74), were constructed. Their thermodynamic parameters of denaturation and crystal structures were examined by calorimetry and by X-ray crystallography at 100 K, respectively. Differences in the denaturation Gibbs energy change between the wild-type and the hydrophobic mutant proteins ranged from 4.6 to -9.6 kJ/mol, 2.7 to -1.5 kJ/mol, and 3.6 to -0.2 kJ/mol at positions 2, 74, and 110, respectively. The identical substitution at different positions and different substitutions at the same position resulted in different degrees of stabilization. Changes in the stability of the mutant proteins could be evaluated by a unique equation considering the conformational changes due to the substitutions [Funahashi et al. (1999) Protein Eng. 12, 841-850]. For this calculation, secondary structural propensities were newly considered. However, some mutant proteins were not adapted to the equation. The hydration structures around the mutation sites of the exceptional mutant proteins were affected due to the substitutions. The stability changes in the exceptional mutant proteins could be explained by the formation or destruction of the hydration structures. These results suggest that the hydration structure mediated via hydrogen bonds covering the protein surface plays an important role in the conformational stability of the protein.  相似文献   

8.
The minimal mono-heme ferricytochrome c from Bacillus pasteurii, containing 71 amino acids, has been further investigated through mutagenesis of different positions in the loop containing the iron ligand Met71. These mutations have been designed to sample different aspects of the loop structure, in order to obtain insights into the determinants of the stability of the iron(III) environment. In particular, positions 68, 72 and 75 have been essayed. Gln68 has been mutated to Lys to provide a suitable alternate ligand that can displace Met71 under denaturing conditions. Pro72 has been mutated to Gly and Ala to modify the range of allowed backbone conformations. Ile75, which is in van der Waals contact with Met71 and partly shields a long-lived water molecule in a protein cavity, has been substituted by Val and Ala to affect the network of inter-residue interactions around the metal site. The different contributions of the above amino acids to protein parameters such as structure, redox potential and the overall stability against unfolding with guanidinium hydrochloride are analyzed. While the structure remains essentially the same, the stability decreases with mutations. The comparison with mitochondrial c-type cytochromes is instructive.Abbreviations Bpcytc soluble fragment of cytochrome c553 from Bacillus pasteurii - GdmCl guanidinium chloride - I75A Ile75 to Ala mutant - I75V Ile75 to Val mutant - P72A Pro72 to Ala mutant - P72G Pro72 to Gly mutant - Q68K Gln75 to Lys mutant - WT wild type  相似文献   

9.
Chi MC  Liu JS  Wang WC  Lin LL  Huang HB 《Biochimie》2008,90(5):811-819
Leucine aminopeptidase (LAP) is an exopeptidase that catalyzes the hydrolysis of amino acid residues from the amino terminus of proteins and peptides. Sequence alignment shows that the conserved Ala348 and Gly350 residues of Bacillus kaustophilus LAP (BkLAP) are located right next to a coordinated ligand. We further investigated the roles of these two residues by performing computer modeling and site-directed mutagenesis. Based on the modeling, the carbonyl group of Ala348 interacts with Asn345 and Asn435, and that of Gly350 with Ile353 and Leu354, where these interactions might maintain the zinc-coordinated residues at their correct positions. Replacement of Ala348 with Arg resulted in a dramatic reduction in LAP activity. A complete loss of the activity was also observed in A348E, A348V, and the Gly350 variants. Measurement of intrinsic tryptophan fluorescence revealed alteration of the microenvironment of aromatic amino acid residues, while circular dichroism spectra were nearly identical for wild-type and all mutant enzymes. Protein modeling and site-directed mutagenesis suggest that residues Ala348 and Gly350 are essential for BkLAP in maintaining a stable active-site environment for the catalytic reaction.  相似文献   

10.
A number of residues in globins family are well conserved but are not directly involved in the primary oxygen-carrying function of these proteins. A possible role for these conserved, non-functional residues has been suggested in promoting a rapid and correct folding process to the native tertiary structure. To test this hypothesis, we have studied pH-induced equilibrium unfolding of mutant apomyoglobins with substitutions of the conserved residues Trp14 and Met131, which are not involved in the function of myoglobin, by various amino acids. This allowed estimating their impact on the stability of various conformational states of the proteins and selecting conditions for a folding kinetics study. The results obtained from circular dichroism, tryptophan fluorescence, and differential scanning microcalorimetry for these mutant proteins were compared with those for the wild type protein and for a mutant with the non-conserved Val17 substituted by Ala. In the native folded state, all of the mutant apoproteins have a compact globular structure, but are destabilized in comparison to the wild type protein. The pH-induced denaturation of the mutant proteins occurs through the formation of a molten globule-like intermediate similar to that of the wild type protein. Thermodynamic parameters for all of the proteins were calculated using the three state model. Stability of equilibrium intermediates at pH ~4.0 was shown to be slightly affected by the mutations. Thus, all of the above substitutions influence the stability of the native state of these proteins. The cooperativity of conformational transitions and the exposed to solvent protein surface were also changed, but not for the substitution at Val17.  相似文献   

11.
To study the role of Pro residues in the conformation and conformational stability of a protein, nine mutant alpha subunits of tryptophan synthase from Escherichia coli, in which Ala or Gly was substituted for each of six Pro residues (positions 28, 57, 62, 96, 132, and 207) that are conserved in 10 microorganisms, were constructed by means of site-directed mutagenesis. The far-ultraviolet (UV) CD spectra of five mutant alpha subunits with Ala in place of Pro were identical to the spectrum of the wild-type protein, the exception being the mutant at position 207 (P207A). CD values in the far-UV region were less negative for P207A, indicating that the Pro residue at position 207 plays a role in maintaining the intact structure of the alpha subunit. The negative CD values of the Gly mutants examined (P28G, P96G, and P132G) were also decreased. Calorimetric measurements showed that the two mutants at position 28 (P28G and P28A) gave two peaks in the excess heat capacity curve, whereas the wild type and other Pro mutants had only a single peak. The stability of each mutant protein relative to that of the wild type was about the same for P57A, less for P62A and P132A, and markedly decreased for P96A and P207A, which are substituted at less mobile positions. The changes of denaturation entropy (delta delta dS) at the denaturation temperature of the wild-type protein (54.1 degrees C at pH 9.0) were positive for P57A, P62A, and P132A, but negative for P96A, P207A, and P132G.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, yet their primary sequences are rich in residues known in globular proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have now designed and synthesized a series of model 20-residue peptides with "guest" hydrophobia segments embedded in "host" N- and C-terminal hydrophilic matrices. Molecular design was based on the prototypical sequence NH2-(Ser-Lys)2-Ala5-Leu6-x7-Ala8-Leu9-y10-Trp 11-Ala12-Leu13-z14-(Lys-Ser)3-OH. The 10-residue hydrophobic mid-segment 5-14 is expected to act as ca. three turns of an alpha-helix. In the present work, we compare the 20-residue peptide having three "helix-forming" Ala residues [x = y = z = Ala (peptide 3A)] to the corresponding peptide 3G (x = y = z = Gly) which contains three "helix-breaking" Gly residues. Trp was inserted to provide a measure of aromatic character typical of TM segments; Ser and Lys enhanced solubility in aqueous media. Circular dichroism studies in water, in a membrane-mimetic [sodium dodecylsulfate (SDS)], medium, and in methanol solutions, demonstrated the exquisite sensitivity of the conformations of these peptides to environment, and proved that despite its backbone flexibility, Gly can be accommodated as readily as Ala into a hydrophobic alpha-helix in a membrane. Nevertheless, the relative stability of Ala- vs. Gly-containing helices emerged in methanol solvent titration and temperature dependence experiments in SDS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Peptidyl-tRNA hydrolase from Mycobacterium smegmatis is a single domain 21 kDa protein involved in the hydrolysis of prematurely produced peptidyl-tRNAs to ensure the viability of cells in bacteria, thus making it a potentially important drug target. In order to aid the development of potent drugs for controlling bacterial infections, the three-dimensional structure of peptidyl-tRNA hydrolase from Mycobacterium smegmatis has been determined. The protein adopts a compact α/β globular fold with a twisted β-sheet surrounded by α-helices. The functionally important C-terminal stretch has been unambiguously modeled for the first time in the unliganded structure of peptidyl-tRNA hydrolase. The segment, Gly138 - Val150 is mobile because it lacks significant interactions with the rest of the protein molecule. This conformational flexibility is reflected through different values of distances between a reference atom Ala147 Cα of the segment Gly138 - Val150 to Gly114 Cα from another segment from opposite side of the substrate binding channel in Mycobacterium smegmatis (7.8 Ǻ), Mycobacterium tuberculosis (9.5 Ǻ) and Escherichia coli (11.8 Ǻ). Similarly, the conformation of loop Gly109 - Gly117 with respect to another loop Asp95 - Asp100 also shows variability of the substrate binding cleft as the distance between Asp98 Oδ2 to Gly113 Cα in Mycobacterium smegmatis is 4.5 Ǻ while the corresponding distances in Mycobacterium tuberculosis and Escherichia coli are 3.1 Ǻ and 6.7 Ǻ respectively. The hydrogen bonded interactions between Asn116, His22 and Asp95 indicate a stereochemically favorable arrangement of these residues for catalytic action.  相似文献   

14.
Two allelic variants and eight site-directed mutants of cytochrome P450 2B1 differing at residue 478 have been expressed in COS cells and assayed for androstenedione hydroxylase activities. The 478Gly and 478Ala variants and five mutants (Ser, Thr, Val, Ile, and Leu) exhibited 16 beta-OH:16 alpha-OH ratios ranging from 0.7 to 9.3, whereas the Pro, Glu, and Arg mutants were expressed but inactive. The seven samples active toward androstenedione also exhibited testosterone 16 beta-OH:16 alpha-OH ratios ranging from 0.4 to 2.3. With both steroids, the Gly variant had the highest 16 beta-hydroxylase activity, and the 16 beta-OH:16 alpha-OH ratio increased with the size of aliphatic size chains (Ala, Val, and Ile/Leu). The highest ratio of androgen 15 alpha:16-hydroxylation was observed with the Ser mutant. On the basis of previous work indicating decreased susceptibility of the 478Ala variant in liver microsomal and reconstituted systems to inactivation by chloramphenicol analogs, methodology was refined for monitoring enzyme inactivation in COS cell microsomes. The Gly and Ala variants were inactivated by chloramphenicol with similar rate constants, whereas the Ser and Val mutants were inactivated more slowly, and the Leu mutant was refractory. Only the Gly variant was inactivated by the chloramphenicol analog N-(2-p-nitrophenethyl)chlorofluoroacetamide. Thus, the side chain of residue 478 appears to be a major determinant of enzyme inactivation as well as of androgen hydroxylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have probed the electrophilic binding site (H-site) of human glutathione transferase P1-1 through mutagenesis of two valines, Val 10 and Val 35, into glycine and alanine, respectively. These two residues were previously shown to be the only conformationally variable residues in the H-site and hence may play important roles in cosubstrate recognition and/or product dissociation. Both of these mutant enzymes have been expressed in Escherichia coli and purified and their kinetic properties characterized. The results demonstrate that Val35Ala behaves similarly to wild-type, whereas Val10Gly exhibits a strong decrease of k(cat) and k(cat)/K(m) (cosub) toward two selected cosubstrates: ethacrynic acid and 1-chloro-2,4-dinitrobenzene. Pre-steady-state kinetic analysis of the GSH conjugation with ethacrynic acid shows that both wild-type and Val10Gly mutant enzymes exhibit the same rate-limiting step: the dissociation of product. However, in the Val10Gly mutant there is an increased energetic barrier which renders the dissociation of product more difficult. Similar results are found for the Val10Gly mutant with 1-chloro-2,4-dinitrobenzene as cosubstrate. With this latter cosubstrate, Val 10 also exerts a positive role in the conformational transitions of the ternary complex before the chemical event. Crystallographic analysis of the Val10Gly mutant in complex with the inhibitor S-hexyl-GSH suggests that Val 10 optimally orientates products, thus promoting their exit from the active site.  相似文献   

16.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

17.
S C Li  C M Deber 《FEBS letters》1992,311(3):217-220
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation once inserted into the membrane, yet consist of primary sequences rich in residues known in soluble proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have designed and synthesized a series of 20-residue peptides with 'guest' hydrophobic segments--expected to provide three turns of incipient alpha-helix content--embedded in 'host' hydrophilic (Lys-Ser) matrices. Circular dichroism (CD) spectra of the model peptides in water showed that significant helical content was observed only for peptides with high Ala content; others behaved as 'random coils'. However, in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, it was found that Gly can be accommodated as readily as Ala, and Ile or Val as readily as Leu, in hydrophobic alpha-helices. Further subtleties of structural preferences could be observed in electrically-neutral lyso-phosphatidylcholine (LPC) micelles, where helical propensity decreased in the order Ala-Leu-rich > Gly-Leu-rich > Gly-Ile(Val)-rich hydrophobic segments. The results conjure a role of environment-dependent helix-modulation for Gly, Ile, and Val residues--and suggest that these residues may provide, in part, the structural basis for conformational transitions within or adjacent to membrane domains, such as those accompanying membrane insertion and/or required for transport or signalling functions.  相似文献   

18.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

19.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

20.
Takano K  Yamagata Y  Yutani K 《Proteins》2001,45(3):274-280
Our previous study of six non-Gly to Gly/Ala mutant human lysozymes in a left-handed helical region showed that only one non-Gly residue at a rigid site had unfavorable strain energy as compared with Gly at the same position (Takano et al., Proteins 2001; 44:233-243). To further examine the role of left-handed residues in the conformational stability of a protein, we constructed ten Gly to Ala mutant human lysozymes. Most Gly residues in human lysozyme are located in the left-handed helix region. The thermodynamic parameters for denaturation and crystal structures were determined by differential scanning calorimetry and X-ray analysis, respectively. The difference in denaturation Gibbs energy (DeltaDeltaG) for the ten Gly to Ala mutants ranged from + 1.9 to -7.5 kJ/mol, indicating that the effect of the mutation depends on the environment of the residue. We confirm that Gly in a left-handed region is more favorable at rigid sites than non-Gly, but there is little difference in energetic cost between Gly and non-Gly at flexible sites. The present results indicate that dihedral angles in the backbone conformation and also the flexibility at the position should be considered for analyses of protein stability, and protein structural determination, prediction, and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号