首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a first step towards studying the biochemical relationship between Golgi vesicles (GVs) and tube wall components, isolation of GVs from the growing pollen tubes ofCamellia japonica was attempted using a centrifugation method with mannitol. The isolated GV was identified ultrastructurally and immunocytochemically. The main components of the GV were proteins and carbohydrates. The main monosaccharides of GV polysaccharides were galactose, arabinose and uronic acid, and pectins and arabinogalactan proteins also were detected immunochemically. An antiserum against the isolated GVs reacted with the outer layer of the pollen tube wall and the intine layers of the grain wall as well as thein situ GVs in the pollen tube and the grain cytoplasm. We have thus successfully isolated GVs and shown that they contain pectic substances and arabinogalactan proteins which contribute to formation of the pollen tube primary wall.  相似文献   

2.
Summary Pollen tubes ofLilium longiflorum were loaded with quin-2 to determine the cytoplasmic free calcium. Quin-2-fluorescence was detected at 500 nm with alternating excitation at 340 nm and 360 nm. The calcium2+-concentration was obtained using the intensity ratio R=I340/I360. The analysis exhibits a [Ca2+] of nearly 10–7mol·l–1 in the tip region and about 2·10–8 mol·l–1at the tube base, near the pollen grain. The data give evidence for the existence of a continuous gradient of free calcium within growing pollen tubes of various length.  相似文献   

3.
Summary A polyclonal antibody against -1,3-glucan, callose, extracted from the pollen tube wall ofCamellia japonica was raised in mice and, using it as a probe, the localization of callose in the germinated pollen was studied. By confocal laser scanning microscopy, callose was found in the tip region of the pollen tube and the tube wall; the immuno-fluorescence in the tube wall was less toward the base of the tube. In contrast, the tip region did not fluoresce although the whole of the tube wall did strongly with aniline blue, the specific dye for callose. Immuno-electron microscopy showed that callose was also found in Golgi vesicles which concentrated in the tip region of the pollen tube, the inner layer of the tube wall, callose plugs, and Golgi vesicles in the pollen grain. Immuno-gold labeling was often detected on the fibrous structures in Golgi vesicles and callose plugs. Based on these results, the participation of Golgi vesicles in the formation of the tube wall and callose plugs was discussed.Abbreviation TBS Tris-buffered saline - Tris Tris(hydroxy-methyl)-aminomethane - PBS phosphate-buffered saline - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - CLSM confocal laser scanning microscopy - DP degree of polymerization  相似文献   

4.
5.
6.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   

7.
S. M. Read  A. E. Clarke  A. Bacic 《Protoplasma》1993,174(3-4):101-115
Summary Production of sperm cells by division of the generative cell occurs during growth ofNicotiana (tobacco) pollen tubes through the sporophytic tissue of the style, and is associated with transition to the second phase of pollen-tube growth. WhenNicotiana pollen tubes are grown in liquid culture, the extent of generative-nucleus division and the timing of this division depend on the chemical composition of the medium. Addition of reduced forms of nitrogen, either as mixed amino-acids (0.03% w/v of an acid hydrolysate of casein) or as 1 mM ammonium chloride, induces division of the generative nucleus in over 90% of the tubes; 3 mM calcium nitrate does not stimulate division. Individual amino-acids differ in their ability to induce this division. Contaminants in some batches of poly(ethylene glycol), which is a major component of pollen-tube growth media, inhibit generative-nucleus division; this inhibition is greater in the absence of nitrogen, which increases the observed nitrogen-dependence of division. Reduced forms of nitrogen are also required for growth of pollen tubes after division, when callose plugs are deposited. In the absence of nitrogen, growth continues until the point where sperm cell production would normally occur, then ceases. Addition of amino-acids or ammonium chloride thus allows cultured pollen tubes ofNicotiana to progress to their second phase of growth. WhenNicotiana pollen is germinated in a complete culture medium at 25–26°C, sperm nuclei are first observed in the growing tubes after about 10 h, and by about 16 h most of the tubes have undergone division; at lower temperatures, division is delayed. The timing of division also varies between species ofNicotiana, but division occurs similarly in self-compatible and self-incompatible species. Anaphase in an individual pollen tube is calculated to take less than 4 min. The resultant sperm nuclei usually trail behind the vegetative nucleus, but a variety of arrangements of the three nuclei are observed.Abbreviations DAPI 4,6-diamidino-2-phenylindole - PEG poly(ethylene glycol) - OG ordinary grade of PEG - SP Specially Purified for Biochemistry grade of PEG  相似文献   

8.
In plant cells, microtubule-based motor proteins have not been characterized to the same degree as in animal cells; therefore, it is not yet clear whether the movement of organelles and vesicles is also dependent on the microtubular cytoskeleton. In this work the kinesinimmunoreactive homologue from pollen tubes of Nicotiana tabacum L. has been purified and biochemically characterized. The protein preparation mainly contained a polypeptide with a relative molecular weight of approx. 100 kDa. This polypeptide bound to animal microtubules in an ATP-dependent manner and it further copurified with an ATPase activity fourfold-stimulated by the presence of microtubules. In addition, the sedimentation coefficient (approx. 9S) was similar to those previously shown for other kinesins. Immunofluorescence analyses revealed a partial co-distribution of the protein with microtubules in the pollen tube. These data clearly indicate that several properties of the kinesin-immunoreactive homologue are similar to those of kinesin proteins, and suggest that molecular mechanisms analogous to those of animal cells may drive the microtubule-based motility of organelles and vesicles in plants.Abbreviations AE-LPLC anion-exchange low-pressure liquid chromatography - AMPPNP 5-adenylylimidodiphosphate - PKH pollen kinesin homologue - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

9.
Ultrastructural studies of the pollen tubes of Nicotiana sylvestris grown in the pistil revealed an extensive development of plasmatubules formed by evaginations of the plasma membrane. The plasmatubules occurred as twisted tubular structures in the periplasmic space along the tube wall and, in cross section, exhibited circular profiles with an outer diameter of 28±4 nm. They were also seen in deep, pocket-like invaginations of the plasma membrane and in this case the profiles had an outer diameter of 34±8 nm. In the pocket-like invaginations they were partially branched and often closely packed to form groups with obvious patterns. The enlargement of the plasma-membrane area resulting from plasmatubules formed along the tube wall was about six-to tenfold. Pollen tubes grown in vitro exhibited poorly developed plasmatubules. It is suggested that the large extension of the plasma membrane could enhance the uptake of nutrients, and thus might be responsible for the comparatively fast growth of pollen tubes in the pistil. Moreover, it is also assumed that the turnover rate of the Golgi apparatus must be higher in pollen tubes growing in vivo than in vitro, in order to provide a sufficient amount of membrane for the formation of the plasma membrane with its tubular modifications.  相似文献   

10.
Summary Monoclonal antibody PCBC3, raised against stylar extracts fromNicotians, alata flowers, was deduced from enzyme-linked immunosorbent assays and inhibition of immuno-gold labelling on tissue sections to bind specifically to carbohydrate epitopes on arabinogalactan proteins (AGPs) but not to other arabinose-containing cell wall polysaccharides. When pollen grains ofN. tabacum were hydrated in fixative, PCBC3 bound to vesicles in the vicinity of the endoplasmic reticulum but, when grains were hydrated for 20 min in culture medium before fixation, binding was restricted to the plasma membrane. The generative-cell plasma membrane was also labelled in grains ofLycopersicon peruvianum. In pollen tubes ofN. tabacum grown in liquid culture, the AGPs detected by PCBC3 were located in several regions, including the plasma membrane, tubular-vesicular structures (plasmalemmasomes) at and under the plasma membrane, and multilamellar bodies within vacuoles, features generally associated with endocytosis. Labelling was not evident in secretory vesicles or the plasma membrane at the pollen-tube tip. The AGPs detected with PCBC3 were also present in pollen-tube walls, near the interface between the inner, callosic layer and the outer, fibrillar, pectic layer. Pollen tubes ofN. tabacum grown in medium lacking added CuSO4 produce a wall with an abnormally thickened fibrillar layer, and this layer was uniformly labelled with PCBC3. The disposition of wall AGPs thus changes in pollen tubes of different morphologies.Abbreviations AGP arabinogalactan protein - -L-Araf -L-arabinofuranose - ELISA enzyme-linked immunosorbent assay - MAb monoclonal antibody - PBS phosphate-buffered saline  相似文献   

11.
M. Kroh  B. Knuiman 《Planta》1985,166(3):287-299
Exocytosis occurring during deposition of secondary wall material was studied by freeze-fracturing ultrarapidly frozen non-plasmolyzed and plasmolyzed tobacco pollen tubes. The secondary wall of tobacco pollen tubes shows a random orientation of microfibrils. This was observed directly on fractures through the tube wall and indirectly as imprints of microfibrils on fracture faces of the plasma membrane of non-plasmolyzed tubes. About half of the plasmatic fracture faces from non-plasmolyzed and plasmolyzed pollen tubes carried hexagonal arrays of intramembraneous particles in between randomly distributed particles. Deposition of secondary wall material was often accompanied by an undulated plasma membrane and the presence of membrane-bound vesicles in invaginations of the plasma membrane, between the plasma membrane and secondary wall and-especially in plasmolyzed tubes-within the secondary wall of tube flanks and wall cap. The findings are discussed in connection with published schemes of membrane behaviour during exocytosis.Abbreviations EF extraplasmatic fracture face - IMP(s) intramembraneous particle(s) - PF plasmatic fracture face Extended version of a contribution (poster) presented at the 8th Int. Symp. on Sexual Reproduction in Seed Plants, Ferns and Mosses, Wageningen, The Netherlands, August 1984 Dedicated to Prof. Dr. H.F. Linskens (Nijmegen) on the occasion of his 65th birthday in 1986  相似文献   

12.
Summary The monoclonal antibodies JIM 5 (against unesterified pectin), JIM 7 (against methyl esterified pectin), MAC 207 (against arabinogalactan proteins, AGPs), and JIM 8 (against a subset of AGPs) were utilized singly or in combinations for immunogold labelling of germinated pollen grains and pollen tubes ofNicotiana tabacum. Pectins were localized in the inline of pollen grain, unesterified pectin being more abundant than the esterified one. AGPs were co-localized with pectin in the inline, but were present preferably close to the plasma membrane. In pollen tubes, AGPs, unesterified and esterified pectins were co-localized in the outer and middle layers of the cell wall. The density of the epitopes was not uniform along the length of the pollen tube, but showed alterations. In the pollen tube tip wall esterified pectin was abundantly present, but not AGPs. In the cytoplasm esterified pectin and AGPs were detected in Golgi derived vesicles, indicating their role in the pathway of the cell wall precursors. In the cell wall of generative cell only AGPs, but no pectins were localized. The co-localization of pectins and AGPs in the cell wall of pollen grain and pollen tube might play an important role, not only in maintenance of the cell shape, but also in cell-cell interaction during pollen tube growth and development.Abbreviations AGP arabinogalactan protein - BSA bovine serum albumin - GA glutaraldehyde - MAb monoclonal antibody - NGS normal goat serum - PFA paraformaldehyde  相似文献   

13.
M. Kroh  B. Knuiman 《Planta》1982,154(3):241-250
Tobacco pollen tubes grown in vitro and from pollinated tobacco styles were treated by chemical solvents to remove one or more of the following polysaccharides from the tube walls: pectin (ethylenediamine tetraacetic acid); hemicellulose (alkali); callose (alkali; potassium hypochlorite); cellulose (cuprammonium); and all polysaccharides with exception of cellulose (H2O2/glacial acetic acid). Both the inner tube wall, which we had regarded as the secondary wall, and the plugs contained, in addition to callose, microfibrils of cellulose and non-cellulosic microfibrils that had pectin-like properties. When using the expressions callosic or callose layer and callose plugs in reference to pollen tubes, one should realize that they do not imply the exclusive presence of callose in the inner tube wall layer and its localized thickenings.Extended version of a contribution (poster) presented at the International Symposium Advances in Plant Cytoembryology in Lublin, Poland, in June 1980 Dedicated to Professor J. Straub (Köln-Vogelsang) on his 70th birthday in 1981  相似文献   

14.
The pollen grain germinationin vitro and progamic phase till fertilization inOenothera hookeri de Vries was observed after open and controlled pollination. The same pattern of pollen grain germination was foundin vitro and on the stigma. The pollen tubes can germinate from 1,2 or 3 poruses of the pollen grain, divide and branch during their growth in the ovary. The branches are of different length and give secondary splits. Special short branches are formed near the micropyle of the ovule. They grow into top part of integments. The pollen tubes start to branch profusely near the placental surface. In that place they are likely to react to the stimulus from mature ovules which seems to be dispersed in the exudate covering placenta.  相似文献   

15.
Summary The structure of sperm cells and their association with the vegetative nucleus in pollen tubes ofNicotiana tabacum grown in styles were observed with the electron microscope, demonstrating the existence of a male germ unit. The two sperm cells are arranged in tandem and are closely associated with the vegetative nucleus, which always takes the lead. The leading sperm cell (SC 1) has a long and narrow cytoplasmic projection which lies within the enclaves of the much lobed vegetative nucleus, thus forming a physical association. The trailing sperm cell (SC 2) and the SC 1 are not only joined by a common transverse cell wall but also are surrounded by a periplasm bounded by the plasma membrane of the sperm cells and that of the vegetative cell, thus forming a structural connection. The sperm cells are elongated, with cytoplasmic projections at the anterior end of the SC 1 and at both ends of the SC 2. The cytoplasm of both sperm cells includes mitochondria, endoplasmic reticulum, dictyosomes, ribosomes, small vacuoles and axially oriented microtubules. No plastids were observed.Abbreviations DAPI 4,6-diamino-2-phenylindole - MGU male germ unit - MT microtubule - SC 1 the leading sperm cell physically associated with the vegetative nucleus - SC 2 the trailing sperm cell  相似文献   

16.
The behavior and role of the microtubule (MT) and actin-myosin components of the cytoskeleton during pollen tube growth in two species of Pinus were studied using anti--tubulin, rhodamine-phalloidin, anti-myosin, and the appropriate inhibitors. Within germinated pollen tubes MTs were arranged obliquely or transversely, but in elongated tubes they were arranged along the tube's long axis. MTs were localized in the tube tip region, excluding the basal part. Altered growth was found in pollen tubes treated with colchicine; the tips of many pollen tubes incubated in the liquid medium were branched and/or rounded, and those in the agar medium were divided into many branches. Both the branching and the rounding were considered to be caused by the disturbance of polarizing growth of the tube due to MT disorganization with colchicine treatment. Actin filaments (F-actin) were found in the major parts of many pollen tubes along their long axis, excluding the tip region. In a few tubes, however, F-actin was distributed throughout the tube. The areas in the pollen tube containing F-actin were filled with abundant cytoplasmic granules, but the areas without F-actin had very few granules. The tube nucleus, which migrated from the grain area into the tube, was closely associated with F-actin. Germination of pollen grains treated with cytochalasin B was little affected, but further tube elongation was inhibited. Myosin was identified on cytoplasmic granules and to a lesser extent on the tube nucleus in the pollen tubes. Several granules were attached to the nuclear envelope. Tube growth was completely inhibited by N-ethylmaleimide treatment. In generative cells that were retained in the pollen grain, both MT and F-actin networks were observed. Myosin was localized on the cytoplasmic granules but not on the cell surface. In conclusion, it was shown that actin-myosin and MTs were present in gymnospermous Pinus pollen tubes and it is suggested that the former contributed to outgrowth of the tubes and the latter contributed to polarized growth. Several differences in the behavior of cytoskeletal elements in generative cells compared to angiosperms were revealed and are discussed.  相似文献   

17.
Cell walls isolated from pollen of Nicotiana alata germinated in vitro contain glucose and arabinose as the predominant monosaccharides. Methylation analysis and cytochemical studies are consistent with the major polysaccharides being a (13)--D-glucan (callose) and an arabinan together with small amounts of cellulose. The cell walls contain 2.8% uronic acids. Alcian blue stains the pollen-tube walls intensely at the tip, indicating that acidic polysaccharides are concentrated in the tip. Synthetic aniline-blue fluorochrome is specific primarily for (13)--D-glucans and stains the pollen-tube walls, except at the tip. Protein (1.5%), containing hydroxyproline (2.4%), is present in the cell wall.  相似文献   

18.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

19.
M. Cresti  F. Ciampolini  G. Sarfatti 《Planta》1980,150(3):211-217
No differences have been observed in vivo between Lycopersicum peruvianum compatible and incompatible pollen during activation and pollen tube emission and organization, that is until 4 h and 30 min after pollination. During pollen activation the main events are the setting free of rough endoplasmic reticulum (RER) cisterns which were stacked in the mature pollen, the increase in the number of polysomes, and a great activity of the dictyosomes. Immediately after germination of the vegetative nucleus and the generative cell move into the tube, the generative cell diviting to form the male gametes; the tube then becomes organized in four zones. This series of changes is similar to what has already been observed in vitro except that in vitro the generative cell remains undivided and the whole process from seeding to tube organization takes 3 h instead of 4 h and 30 min after pollination, as it does in vivo. Our findings are compatible with the main models of the tube inhibition mechanism proposed till now.Abbreviations RER rough endoplasmic reticulum - GC generative cell - VN vegetative nucleus - GP germinative pore Research performed under C.N.R. (Italian National Research Council) program Biology of Reproduction  相似文献   

20.
Lenartowska M  Michalska A 《Planta》2008,228(5):891-896
The actin cytoskeleton plays a crucial role in pollen tube growth. In elongating pollen tubes the organization and arrangement of actin filaments (AFs) differs between the shank and apical region. However, the orientation of AFs in pollen tubes has not yet been successfully demonstrated. In the present work we have used myosin II subfragment 1 (S1) decoration to determine the polarity of AFs in pollen tubes. Electron microscopy studies revealed that in the shank of the tube bundles of AFs exhibit uniform polarity with those close to the cell cortex having their barbed ends oriented towards the tip of the pollen tube while those in the cell center have their barbed ends oriented toward the base of the tube. At the subapex, some AFs are organized in closely packed and longitudinally oriented bundles and some form curved bundles adjacent to the cell membrane. In contrast, few AFs are dispersed with random orientation in the extreme apex of the pollen tube. Our results confirm that the direction of cytoplasmic streaming within pollen tubes is determined by the polarity of AFs in the bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号