首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ARL4D is a developmentally regulated member of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of Ras-related GTPases. Although the primary structure of ARL4D is very similar to that of other ARF/ARL molecules, its function remains unclear. Cytohesin-2/ARF nucleotide-binding-site opener (ARNO) is a guanine nucleotide-exchange factor (GEF) for ARF, and, at the plasma membrane, it can activate ARF6 to regulate actin reorganization and membrane ruffling. We show here that ARL4D interacts with the C-terminal pleckstrin homology (PH) and polybasic c domains of cytohesin-2/ARNO in a GTP-dependent manner. Localization of ARL4D at the plasma membrane is GTP- and N-terminal myristoylation-dependent. ARL4D(Q80L), a putative active form of ARL4D, induced accumulation of cytohesin-2/ARNO at the plasma membrane. Consistent with a known action of cytohesin-2/ARNO, ARL4D(Q80L) increased GTP-bound ARF6 and induced disassembly of actin stress fibers. Expression of inactive cytohesin-2/ARNO(E156K) or small interfering RNA knockdown of cytohesin-2/ARNO blocked ARL4D-mediated disassembly of actin stress fibers. Similar to the results with cytohesin-2/ARNO or ARF6, reduction of ARL4D suppressed cell migration activity. Furthermore, ARL4D-induced translocation of cytohesin-2/ARNO did not require phosphoinositide 3-kinase activation. Together, these data demonstrate that ARL4D acts as a novel upstream regulator of cytohesin-2/ARNO to promote ARF6 activation and modulate actin remodeling.  相似文献   

2.
Activation of ADP-ribosylation factors (ARFs) is mediated by guanine nucleotide-exchange proteins, which accelerate conversion of inactive ARF-GDP to active ARF-GTP. ARF domain protein (ARD1), a 64-kDa GTPase with a C-terminal ADP-ribosylation factor domain, is localized to lysosomes and the Golgi apparatus. When ARD1 was used as bait to screen a human liver cDNA library using the yeast two-hybrid system, a cDNA for cytohesin-1, a approximately 50-kDa protein with ARF guanine nucleotide-exchange protein activity, was isolated. In this system, ARD1-GDP interacted well with cytohesin-1 but very poorly with cytohesin-2. In agreement, cytohesin-1, but not cytohesin-2, markedly accelerated [(35)S]guanosine 5'-3-O-(thio)triphosphate binding to ARD1. The effector region of the ARF domain of ARD1 appeared to be critical for the specific interaction with cytohesin-1. Replacement of single amino acids in the Sec7 domains of cytohesin-1 and -2 showed that residue 30 is critical for specificity. In transfected COS-7 cells, overexpressed ARD1 and cytohesin-1 were partially colocalized, as determined by confocal fluorescence microscopy. It was concluded that cytohesin-1 is likely to be involved in ARD1 activation, consistent with a role for ARD1 in the regulation of vesicular trafficking.  相似文献   

3.
Activation of ADP-ribosylation factors (ARFs), approximately 20-kDa GTPases that are inactive in the GDP-bound form, depends on guanine nucleotide-exchange proteins (GEPs) to accelerate GTP binding. A novel ARF GEP, designated cytohesin-4, was cloned from a human brain cDNA library. Deduced amino acid sequence of the 47-kDa protein contains the same structural components present in cytohesin -1, -2, and -3, including an approximately 200-amino acid Sec7 domain with an approximately 100-residue pleckstrin homology domain near the C terminus. The Sec7 domain sequence is 77% identical to those of other cytohesins. Structures of the cytohesin-4 and cytohesin-1 genes were remarkably similar, except for an extra 3-base pair (GAG) exon present in cytohesin-1. Two mRNAs with and without the 3-base pair sequence were found in brain in different ratios for cytohesin-1, -2, and -3 but not cytohesin-4. Recombinant cytohesin-4 stimulated guanosine 5'-3-O-(thio)triphosphate binding by human ARF1 and ARF5 but not ARF6. Like other cytohesins and unlike the approximately 200-kDa ARF GEPs, it was not inhibited by brefeldin A. A cytohesin-4 mRNA of approximately 3.7 kilobases, abundant in leukocytes, was not detected in most tissues. Among separated populations of blood cells, approximately 90% of CD33(+) (monocytes), 80% of CD2(+) (NK/T), and 10-20% of CD19(+) (B) cells contained cytohesin-4 mRNA by in situ hybridization. Thus, in gene structure and brefeldin A-insensitive GEP activity, cytohesin-4 resembles other cytohesins, but its tissue distribution differs considerably, consistent with a different specific function.  相似文献   

4.
Cytohesin-1 is a regulatory interaction partner of the beta2 integrin alphaLbeta2 (LFA-1) and a guanine exchange factor (GEF) for ADP ribosylation factor (ARF)-GTPases. However, a functional role of cytohesin-1 in leukocyte adhesion to activated endothelium and subsequent transmigration in response to chemokines has not been defined. Overexpression of cytohesin-1 increased LFA-1-dependent arrest of leukocytic cells triggered by chemokines on cytokine-activated endothelium in flow while reducing the fraction of rolling cells. Conversely, a dominant-negative PH domain construct of cytohesin-1 but not a mutant deficient in GEF activity impaired arrest, indicating an involvement of the PH domain while GEF function is not required. Expression of these constructs and a beta2 mutant interrupting the interaction with cytohesin-1 indicated that shape change in flow and transendothelial chemotaxis involve both LFA-1 avidity regulation and GEF activity of cytohesin-1. As a potential downstream target, ARF6 but not ARF1 was identified to participate in chemotaxis. Our data suggest that cytohesin-1 and ARF6 are involved in the dynamic regulation of complex signaling pathways and cytoskeletal remodeling processes governing LFA-1 functions in leukocyte recruitment. Differential effects of cytohesin-1 and ARF6 mutants in our systems reveal that cytohesin-1 with its GEF activity controls both conversion of rolling into firm arrest and transmigration triggered by chemokines, whereas a cyclical activity of ARF6 plays a more important role in diapedesis.  相似文献   

5.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

6.
Cytohesins are guanine-nucleotide exchange factors (GEF) for the Arf family of GTPases. One member of the Arf family, ARF6, plays an active role in the intracellular trafficking of G protein-coupled receptors. We have previously reported that Gαq signaling leads to the activation of ARF6, possibly through a direct interaction with cytohesin-2/ARNO. Here, we report that Gαq can directly interact with cytohesin-1, another Arf-GEF of the ARNO/cytohesin family. Cytohesin-1 preferentially associated with a constitutively active mutant of Gαq (Gαq-Q209L) compared to wild-type Gαq in HEK293 cells. Stimulation of TPβ, a Gαq-coupled receptor, to activate Gαq resulted in the promotion of a protein complex between Gαq and cytohesin-1. Confocal immunofluorescence microscopy revealed that wild-type Gαq and cytohesin-1 co-localized in intracellular compartments and at or near the plasma membrane. In contrast, expression of Gαq-Q209L induced a drastic increase in the localization of cytohesin-1 at the plasma membrane. Expression of a dominant-negative mutant of cytohesin-1 reduced by 40% the agonist-induced internalization of TPβ, a process that we previously demonstrated to be dependent on Gαq-mediated signaling and Arf6 activation. Using deletion mutants, we show that cytohesin-1 interacts with Gαq through its N-terminal coiled-coil domain. Cytohesin-1 and cytohesin-2/ARNO mutants lacking the coiled-coil domain were unable to relay Gαq-mediated activation of Arf6. This is the first report of an interaction between the coiled-coil domain of the cytohesin/ARNO family of Arf-GEFs and a member of the heterotrimeric G proteins.  相似文献   

7.
Deletion of the amino-terminal 17 residues from human ADP-ribosylation factor (ARF) resulted in a protein ([delta 1-17]mARF1p) devoid of ARF activity but which retained the ability to bind guanine nucleotides with high affinity. Unlike the wild type, the binding of guanine nucleotides to this deletion mutant was found to be independent of added phospholipids. A chimeric protein was produced, consisting of 10% (the amino-terminal 17 amino acids) human ARF1p and 90% ARL1p, an ARF-like protein (55% identical protein sequence) from Drosophila. This chimera was found to have ARF activity, lacking in the parental ARL1 protein. Thus, the amino terminus of ARF1p was shown to be a critical component of ARF activity. A synthetic peptide, derived from the amino terminus of ARF1p, has no ARF activity. Rather, the peptide was found to be a specific inhibitor of ARF activities. This peptide was also found to be a potent and specific inhibitor of both an in vitro intra-Golgi transport assay and the guanosine 5'-3-O-(thio)triphosphate-stimulated accumulation of coated vesicles and buds from Golgi preparations. We conclude that ARF is required for the budding of coated vesicles from the Golgi stacks and serves a regulatory role in protein secretion through the Golgi in eukaryotic cells.  相似文献   

8.
The GRP1 protein contains a Sec7 homology domain that catalyzes guanine nucleotide exchange on ADP-ribosylation factors (ARF) 1 and 5 as well as a pleckstrin homology domain that binds phosphatidylinositol(3,4,5)P(3), an intermediate in cell signaling by insulin and other extracellular stimuli (Klarlund, J. K., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that both endogenous GRP1 and ARF6 rapidly co-localize in plasma membrane ruffles in Chinese hamster ovary (CHO-T) cells expressing human insulin receptors and COS-1 cells in response to insulin and epidermal growth factor, respectively. The pleckstrin homology domain of GRP1 appears to be sufficient for regulated membrane localization. Using a novel method to estimate GTP loading of expressed HA epitope-tagged ARF proteins in intact cells, levels of biologically active, GTP-bound ARF6 as well as GTP-bound ARF1 were elevated when these ARF proteins were co-expressed with GRP1 or the related protein cytohesin-1. GTP loading of ARF6 in both control cells and in response to GRP1 or cytohesin-1 was insensitive to brefeldin A, consistent with previous data on endogenous ARF6 exchange activity. The ability of GRP1 to catalyze GTP/GDP exchange on ARF6 was confirmed using recombinant proteins in a cell-free system. Taken together, these results suggest that phosphatidylinositol(3,4,5)P(3) may be generated in cell membrane ruffles where receptor tyrosine kinases are concentrated in response to growth factors, causing recruitment of endogenous GRP1. Further, co-localization of GRP1 with ARF6, combined with its demonstrated ability to activate ARF6, suggests a physiological role for GRP1 in regulating ARF6 functions.  相似文献   

9.
ARF GTPases are activated by guanine nucleotide exchange factors (GEFs) of the Sec7 family that promote the exchange of GDP for GTP. Brefeldin A (BFA) is a fungal metabolite that binds to the ARF1*GDP*Sec7 complex and blocks GEF activity at an early stage of the reaction, prior to guanine nucleotide release. The crystal structure of the ARF1*GDP*Sec7*BFA complex shows that BFA binds at the protein-protein interface to inhibit conformational changes in ARF1 required for Sec7 to dislodge the GDP molecule. Based on a comparative analysis of the inhibited complex, nucleotide-free ARF1*Sec7 and ARF1*GDP, we suggest that, in addition to forcing nucleotide release, the ARF1-Sec7 binding energy is used to open a cavity on ARF1 to facilitate the rearrangement of hydrophobic core residues between the GDP and GTP conformations. Thus, the Sec7 domain may act as a dual catalyst, facilitating both nucleotide release and conformational switching on ARF proteins.  相似文献   

10.
A brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (GEP) for ADP-ribosylation factors (ARF) was purified earlier from bovine brain cytosol. Cloning and expression of the cDNA confirmed that the recombinant protein (p200) is a BFA-sensitive ARF GEP. p200 contains a domain that is 50% identical in amino acid sequence to a region in yeast Sec7, termed the Sec7 domain. Sec7 domains have been identified also in other proteins with ARF GEP activity, some of which are not inhibited by BFA. To identify structural elements that influence GEP activity and its BFA sensitivity, several truncated mutants of p200 were made. Deletion of sequence C-terminal to the Sec7 domain did not affect GEP activity. A protein lacking 594 amino acids at the N terminus, as well as sequence following the Sec7 domain, also had high activity. The mutant lacking 630 N-terminal amino acids was, however, only 1% as active, as was the Sec7 domain itself (mutant lacking 697 N-terminal residues). It appears that the Sec7 domain of p200 contains the catalytic site but additional sequence (perhaps especially that between positions 595 and 630) modifies activity dramatically. Myristoylated recombinant ARFs were better than non-myristoylated as substrates; ARFs 1 and 3 were better than ARF5, and no activity was detected with ARF6. Physical interaction of the Sec7 domain with an ARF1 mutant was demonstrated, but it was much weaker than that of the cytohesin-1 Sec7 domain with the same ARF protein. Effects of BFA on p200 and all mutants with high activity were similar with approximately 50% inhibition at 相似文献   

11.
Cell adhesion mediated by integrin receptors is controlled by intracellular signal transduction cascades. Cytohesin-1 is an integrin-binding protein and guanine nucleotide exchange factor that activates binding of the leukocyte integrin leukocyte function antigen-1 to its ligand, intercellular adhesion molecule 1. Cytohesin-1 bears a carboxyl-terminal pleckstrin homology domain that aids in reversible membrane recruitment and functional regulation of the protein. Although phosphoinositide-dependent membrane attachment of cytohesin-1 is mediated primarily by the pleckstrin homology domain, this function is further strengthened by a short carboxyl-terminal polybasic amino acid sequence. We show here that a serine/threonine motif within the short polybasic stretch of cytohesin-1 is phosphorylated by purified protein kinase C delta in vitro. Furthermore, the respective residues are also found to be phosphorylated after phorbol ester stimulation in vivo. Biochemical and functional analyses show that phosphorylated cytohesin-1 is able to tightly associate with the actin cytoskeleton, and we further demonstrate that phosphorylation of the protein is required for maximal leukocyte function antigen-1-mediated adhesion of Jurkat cells to intercellular adhesion molecule 1. These data suggest that both phosphatidylinositol 3-kinase and protein kinase C-dependent intracellular pathways that stimulate beta(2)-integrin-mediated adhesion of T lymphocytes converge on cytohesin-1 as functional integrator.  相似文献   

12.
The induction of a transformed cellular phenotype by viruses requires the modulation of signaling pathways through viral proteins. We show here that the phenotypic changes induced by the kaposin A protein of human herpesvirus 8 are mediated through its direct interaction with cytohesin-1, a guanine nucleotide exchange factor for ARF GTPases and regulator of integrin-mediated cell adhesion. Focus formation, stress fiber dissolution, and activation of the ERK-1/2 MAP kinase signal cascade were reverted by the cytohesin-1 E157K mutant, which is deficient in catalyzing guanine nucleotide exchange. Furthermore, liposome-embedded kaposin A specifically stimulates cytohesin-1 dependent GTP binding of myristoylated ARF1 in vitro. These results suggest a previously unknown involvement of ARF GTPases in the control of cellular functions by herpesviruses.  相似文献   

13.
Guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta,gamma-imido]triphosphate enhance Ca2+-dependent 5-hydroxytryptamine secretion from electropermeabilised human platelets. GTP has little such effect except when the platelets are permeabilised, and incubated with this nucleotide, at 2 degrees C and pH 7.4. The lag phase observed in the time course of 5-hydroxytryptamine secretion induced by addition of guanosine 5'-[gamma-thio]triphosphate is markedly longer than that characterising secretion induced by Ca2+ alone, by thrombin +/- GTP or by guanosine 5'-[gamma-thio]triphosphate in the presence of thrombin. GTP causes competitive inhibition of the enhancement of the Ca2+-dependent secretory response induced by guanosine 5'-[gamma-thio]triphosphate when both nucleotides are added simultaneously. The extent of inhibition is decreased if guanosine 5'-[gamma-thio]triphosphate is added prior to GTP. GTP markedly enhances the effect of thrombin on Ca2+-dependent 5-hydroxytryptamine secretion by increasing the maximal extent of the response and decreasing the thrombin concentration required to give half-maximal response. A similar effect is observed on addition of guanosine 5'-[gamma-thio]triphosphate in the presence of thrombin at short incubation times. On more prolonged incubation the effects of thrombin and guanosine 5'-[gamma-thio]triphosphate are additive. Guanosine 5'-[beta-thio]diphosphate completely inhibits the response induced by guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta,gamma-imido]triphosphate but has little effect on the response induced by Ca2+ when added alone or in the presence of thrombin. Partial inhibition is observed for the response induced by thrombin + GTP. Cyclic-AMP effectively inhibits the response induced by thrombin + GTP but has little effect on that induced by guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta,gamma]imidotriphosphate. The results provide further support for the proposal [Haslam, R.J. & Davidson, M.M.L. (1984) FEBS Lett. 170, 90-95], that receptor--phospholipase-C coupling in platelets is mediated in part by a guanine-nucleotide-binding (Np) protein but that a coupling mechanism may also exist which is independent of such a protein. The properties of guanine-nucleotide-dependent coupling resemble those previously described for receptor--adenylate-cyclase coupling.  相似文献   

14.
Fluoride and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) both activate the hepatocyte membrane polyphosphoinositide phosphodiesterase (PPI-pde) in a concentration-dependent manner. AlCl3 enhances the fluoride effect, supporting the concept that [A1F4]- is the active species. Analysis of the products of inositol lipid hydrolysis demonstrate that phosphatidylinositol bisphosphate is the major lipid to be hydrolysed. Guanosine 5'-[beta-thio]diphosphate (GDP beta S) is an inhibitor of activation of PPI-pde by both fluoride and GTP gamma S. These observations suggest that the guanine nucleotide regulatory protein (termed Gp) bears a structural resemblance to the well-characterized G-proteins of the adenylate cyclase system and the cyclic GMP phosphodiesterase system in phototransduction.  相似文献   

15.
8-Bromoguanosine 2'- and 3'-phosphates have been shown to bind to RNase T1 with the same affinity as the corresponding guanosine phosphates, inducing difference absorption and circular dichroism spectra similar to those induced by the guanosine phosphates. Since the brominated ligands have reduced electron density on N-7 of the guanine ring and syn-fixed conformation due to a bulky, electron-withdrawing Br substituent on C-8, the difference spectra are not attributable to the protonation on N-7 and to the restriction of the ligand to syn-conformation as proposed previously.  相似文献   

16.
Sec7 protein is a guanine nucleotide exchange factor in the ADP-ribosylation factor (ARF) family of small GTP-binding proteins. Aplysia Sec7 proteins (ApSec7s) play many roles in neurite outgrowth and synaptic facilitation in Aplysia neurons. However, the binding property of Aplysia ARF1 by ApSec7 isoforms has not been examined. In this study, we found that the cloned Aplysia ARF1 (ApARF1) protein only localized to the Golgi complex when it was expressed alone in HEK293T cells; however, if ApARF1 was co-expressed with plasma membrane-targeted ApSec7, it localized to both the plasma membrane and the Golgi complex via association with the Sec7 domain of ApSec7. Moreover, in HEK293T cells expressing both ApARF1 and another Sec7 isoform, ApSec7(VPKIS), the pleckstrin homology domain of ApSec7(VPKIS) associated with ApARF1, resulting in its localization to the Golgi complex. Overall, we propose a model in which ApSec7(VPKIS) activates ApARF1 in the Golgi complex, while ApSec7 recruits ApARF1 to the plasma membrane where it activates ApARF1/6 downstream signaling.  相似文献   

17.
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.  相似文献   

18.
ARF1 and ARF6 are distant members of the ADP-ribosylation factor (ARF) small G-protein subfamily. Their distinct cellular functions must result from specificity of interaction with different effectors and regulators, including guanine nucleotide exchange factors (GEFs). ARF nucleotide-binding site opener (ARNO), and EFA6 are analogous ARF-GEFs, both comprising a catalytic "Sec7" domain and a pleckstrin homology domain. In vivo ARNO, like ARF1, is mostly cytosolic, with minor localizations at the Golgi and plasma membrane; EFA6, like ARF6, is restricted to the plasma membrane. However, depending on conditions, ARNO appears active on ARF6 as well as on ARF1. Here we analyze the origin of these ARF-GEF selectivities. In vitro, in the presence of phospholipid membranes, ARNO activates ARF1 preferentially and ARF6 slightly, whereas EFA6 activates ARF6 exclusively; the stimulation efficiency of EFA6 on ARF6 is comparable with that of ARNO on ARF1. These selectivities are determined by the GEFs Sec7 domains alone, without the pleckstrin homology and N-terminal domains, and by the ARF core domains, without the myristoylated N-terminal helix; they are not modified upon permutation between ARF1 and ARF6 of the few amino acids that differ within the switch regions. Thus selectivity for ARF1 or ARF6 must depend on subtle folding differences between the ARFs switch regions that interact with the Sec7 domains.  相似文献   

19.
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.  相似文献   

20.
The Sec7 domain of the guanine nucleotide exchange factor ARNO (ARNO-Sec7) is responsible for the exchange activity on the small GTP-binding protein ARF1. ARNO-Sec7 forms a stable complex with the nucleotide-free form of [Delta17]ARF1, a soluble truncated form of ARF1. The crystal structure of ARNO-Sec7 has been solved recently, and a site-directed mutagenesis approach identified a hydrophobic groove and an adjacent hydrophilic loop as the ARF1-binding site. We show that Glu156 in the hydrophilic loop of ARNO-Sec7 is involved in the destabilization of Mg2+ and GDP from ARF1. The conservative mutation E156D and the charge reversal mutation E156K reduce the exchange activity of ARNO-Sec7 by several orders of magnitude. Moreover, [E156K]ARNO-Sec7 forms a complex with the Mg2+-free form of [Delta17]ARF1-GDP without inducing the release of GDP. Other mutations in ARNO-Sec7 and in [Delta17]ARF1 suggest that prominent hydrophobic residues of the switch I region of ARF1 insert into the groove of the Sec7 domain, and that Lys73 of the switch II region of ARF1 forms an ion pair with Asp183 of ARNO-Sec7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号