首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,126(5):1277-1286
Intercellular adhesion molecule (ICAM)-3, a recently described counter- receptor for the lymphocyte function-associated antigen (LFA)-1 integrin, appears to play an important role in the initial phase of immune response. We have previously described the involvement of ICAM-3 in the regulation of LFA-1/ICAM-1-dependent cell-cell interaction of T lymphoblasts. In this study, we further investigated the functional role of ICAM-3 in other leukocyte cell-cell interactions as well as the molecular mechanisms regulating these processes. We have found that ICAM-3 is also able to mediate LFA-1/ICAM-1-independent cell aggregation of the leukemic JM T cell line and the LFA-1/CD18-deficient HAFSA B cell line. The ICAM-3-induced cell aggregation of JM and HAFSA cells was not affected by the addition of blocking mAb specific for a number of cell adhesion molecules such as CD1 1a/CD18, ICAM-1 (CD54), CD2, LFA-3 (CD58), very late antigen alpha 4 (CD49d), and very late antigen beta 1 (CD29). Interestingly, some mAb against the leukocyte tyrosine phosphatase CD45 were able to inhibit this interaction. Moreover, they also prevented the aggregation induced on JM T cells by the proaggregatory anti-LFA-1 alpha NKI-L16 mAb. In addition, inhibitors of tyrosine kinase activity also abolished ICAM-3 and LFA-1- mediated cell aggregation. The induction of tyrosine phosphorylation through ICAM-3 and LFA-1 antigens was studied by immunofluorescence, and it was found that tyrosine-phosphorylated proteins were preferentially located at intercellular boundaries upon the induction of cell aggregation by either anti-ICAM-3 or anti-LFA-1 alpha mAb. Western blot analysis revealed that the engagement of ICAM-3 or LFA-1 with activating mAb enhanced tyrosine phosphorylation of polypeptides of 125, 70, and 38 kD on JM cells. This phenomenon was inhibited by preincubation of JM cells with those anti-CD45 mAb that prevented cell aggregation. Altogether these results indicate that CD45 tyrosine phosphatase plays a relevant role in the regulation of both intracellular signaling and cell adhesion induced through ICAM-3 and beta 2 integrins.  相似文献   

2.
mAb 60.3 and IB4 to CD18, the common beta-subunit of the human leukocytic cell adhesion molecule family, efficiently inhibit syncytium formation induced by the interaction of HIV type 1 (HIV-1)-infected monocytoid cells and CD4+ T cells. The antibodies also interfere with cellfree HIV-1 infection of U-937 clone 16 cells. Virus-induced aggregation of these cells and the subsequent syncytia formation leading to massive cell death are efficiently blocked, and the number of infected cells remains at a very low level, 2 to 5%, for the entire culture period. However, anti-CD18 mAb do not inhibit binding of the viral envelope glycoprotein gp120 to the cell surface receptor CD4. The results indicate participation of CD18, or of the protein complex CD11a-c/CD18, in addition to CD4, in the infection and cytopathic effect of HIV-1. They also suggest that intercellular adhesion contributes to virus transmission from cell to cell and may be an important mechanism for virus spreading.  相似文献   

3.
Murine anti-CD14 mAb which recognize different CD14 epitopes induced marked homotypic adhesion of normal human monocytes. Induction of aggregation by anti-CD14 mAb required Mg2+, occurred at an optimal temperature of 37 degrees C, but not at 4 degrees C, and exhibited a kinetics which differed from adhesion triggered by IFN-gamma and anti-CD43 mAb. Monocyte adhesion induced by anti-CD14 mAb required neither Fcy gamma R engagement nor cross-linking of CD14, because adhesion was induced by F(ab)'2 fragments, as well as by monovalent F(ab) fragments of anti-CD14 mAb. mAb to CD11a, CD18, and intercellular adhesion molecule-1 (ICAM-1), but not antibodies to CD11b and CD11c, inhibited monocyte adhesion induced by CD14 engagement. These results indicate that CD14-dependent adhesion is mediated by lymphocyte function-associated Ag-1/ICAM-1 interactions. This was confirmed by the absence of aggregation in anti-CD14-stimulated cells from a patient with leukocyte adhesion deficiency. Monocyte adhesion upon CD14 engagement was blocked by an inhibitor of protein kinases, sphingosine. This suggests that protein kinases play a role in the intracellular signaling pathway(s) which couple CD14 to lymphocyte function-associated Ag-1/ICAM-1.  相似文献   

4.
In lymphoid follicles, CD4+ T lymphocytes provide contact-dependent stimuli to B cells that are critical for the generation of specific antibody responses in a process termed Th function. The CD4+ T cell-restricted surface activation protein, 5c8 Ag (T-BAM), has recently been shown to be a component of the contact-dependent helper signal to B cells. To further dissect this process, we utilized a Jurkat T cell lymphoma clone, termed D1.1, that constitutively expresses T-BAM and activates peripheral B cells to express surface CD23 in a contact-dependent mechanism that is inhibited by mAb anti-T-BAM (5c8). Similar to its effect on peripheral B cells, Jurkat D1.1 activates B cells from lymphoid organs, as well as a B cell lymphoma clone, RAMOS 266,4CN 3F10 (RAMOS 266), to up-regulate surface CD23. Interestingly, mAb to the B cell surface molecule, CD40 (mAb G28-5 and B-B20), inhibit D1.1 induced activation of RAMOS 266 and peripheral and lymphoid B cells. In contrast, mAb to CR2 or the adhesion molecules, LFA1, LFA3, or ICAM-1, have little effect. The inhibitory effect of anti-CD40 mAb on B cell activation induced by D1.1 is specific because anti-CD40 potentiates, rather than inhibits, the up-regulation of CD23 on B cells induced by rIL-4. Moreover, cross-linking CD40 molecules by anti-CD40 mAb bound to Fc gamma RII+ (CD32) L cells induces B cell CD23 expression. In vivo, T-BAM-expressing cells are CD4+ T cells that are restricted to lymphoid organs and are localized in the mantle and centrocytic zones of lymphoid follicles and the spleen periarteriolar lymphoid sheath in association with CD40+ B cells. Taken together, these data demonstrate that T-BAM on T cells and CD40 on B cells are involved in contact-dependent T-B help interactions that occur in lymphoid follicles.  相似文献   

5.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

6.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

7.
8.
The human integrin VLA (very late activation antigens)-4 (CD49d/CD29), the leukocyte receptor for both the CS-1 region of plasma fibronectin (Fn) and the vascular cell surface adhesion molecule-1 (VCAM-1), also mediates homotypic aggregation upon triggering with specific anti-VLA-4 monoclonal antibody (mAb). Epitope mapping of this integrin on the human B-cell line Ramos, performed with a wide panel of anti-VLA-4 mAb by both cross-competitive cell binding and protease sensitivity assays, revealed the existence of three topographically distinct epitopes on the alpha 4 chain, referred to as epitopes A-C. By testing this panel of anti-VLA-4 mAb for inhibition of cell binding to both a 38-kDa Fn fragment containing CS-1 and to VCAM-1, as well as for induction and inhibition of VLA-4 mediated homotypic cell adhesion, we have found overlapping but different functional properties associated with each epitope. Anti-alpha 4 mAb recognizing epitope B inhibited cell attachment to both Fn and VCAM-1, whereas mAb against epitope A did not block VCAM-1 binding and only partially inhibited binding to Fn. In contrast, mAb directed to epitope C did not affect cell adhesion to either of the two VLA-4 ligands. All mAb directed to site A, as well as a subgroup of mAb recognizing epitope B (called B2), were able to induce cell aggregation, but this effect was not exerted by mAb specific to site C and by a subgroup against epitope B (called B1). Moreover, although anti-epitope C and anti-epitope B1 mAb did not trigger aggregation, those mAb blocked aggregation induced by anti-epitope A or B2 mAb. In addition, anti-epitope A mAb blocked B2-induced aggregation, and conversely, anti-epitope B2 mAb blocked A-induced aggregation. Further evidence for multiple VLA-4 functions is that anti-Fn and anti-VCAM-1 antibodies inhibited binding to Fn or to VCAM-1, respectively, but did not affect VLA-4-mediated aggregation. In summary, we have demonstrated that there are at least three different VLA-4-mediated adhesion functions, we have defined three distinct VLA-4 epitopes, and we have correlated these epitopes with the different functions of VLA-4.  相似文献   

9.
NK cells and certain CTL can recognize and lyse targets without restriction by the MHC. NK cells do not express CD3/TCR complexes and the membrane receptors participating in MHC-unrestricted cytotoxicity are largely unknown. We demonstrate that YT2C2, a human NK leukemia cell line, expresses the CD28 differentiation Ag and can spontaneously lyse both murine and human cell lines expressing B7, a B cell- activation Ag that is a ligand for CD28. The participation of CD28/B7 interactions in MHC-unrestricted cytotoxicity mediated by YT2C2 cells was demonstrated by correlation of target sensitivity with levels of B7 expression, inhibition of cytotoxicity by anti-CD28 or anti-B7 mAb, and by making both murine and human cell lines susceptible to YT2C2-mediated lysis by genetic transfection with expression vectors containing B7 cDNA. However, CD28/B7 interactions alone were insufficient to initiate cytotoxicity. mAb inhibition experiments and selection of CD54- (intercellular adhesion molecule-1) deficient B cell targets indicated that CD11a/18 (lymphocyte function-associated Ag-1) also cooperated in CD28/B7-dependent cytotoxicity. The requirement for both CD28/B7 and lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interactions in YT2C2-mediated MHC-unrestricted cytotoxicity was confirmed by demonstrating that efficient lysis of murine L cells required cotransfection with both B7 and intercellular adhesion molecule-1. These findings support the concept that MHC-unrestricted cytotoxicity may not be due to a unique receptor, but may result from interactions between an appropriate array of "adhesion" molecules with their ligands.  相似文献   

10.
CD19 is a member of the Ig superfamily expressed on the surface of B lymphocytes that may be involved in the regulation of B cell function. Immunoprecipitation studies with B cell lines solubilized by digitonin have shown CD19 to be part of a multimolecular complex that includes CD21 (CR2) and other unidentified proteins. In this study, two of the CD19-associated proteins were identified as TAPA-1, which is expressed on most cell types, and Leu-13, which is expressed on subsets of lymphoid cells. TAPA-1 and Leu-13 are physically associated in many cell lineages. CD19 and CD21 mAb each specifically coprecipitated proteins of the same size as those precipitated by TAPA-1 and Leu-13 mAb from B cell lines and cDNA-transfected K562 cell lines. Western blot analysis with a TAPA-1 mAb verified the identity of TAPA-1 in CD19 and CD21 immunoprecipitated materials. In addition, when TAPA-1 or Leu-13 were crosslinked and patched on the cell surface, all of the CD19 comigrated with TAPA-1 and some of the CD19 comigrated with Leu-13. Furthermore, mAb binding to CD19, CD21, TAPA-1, and Leu-13 on B cell lines induced similar biologic responses, including the induction of homotypic adhesion, inhibition of proliferation, and an augmentation of the increase in intracellular [Ca2+] induced by suboptimal cross-linking of surface Ig on B cell lines. Together, these data suggest that TAPA-1 and Leu-13 are broadly expressed members of a signal transduction complex in which lineage-specific proteins, such as CD19 and CD21, provide cell-specific functions.  相似文献   

11.
CD43 (leukosialin, sialophorin), a prominent component of the hemopoietic cell surface, has an enigmatic role in cell-cell interaction. The observation that CD43 ligation triggers homotypic aggregation of monoblastoid U937 cells has permitted analysis of this: CD43-induced aggregation was distinguishable from CD29- (also known as beta1 integrin) or CD98- (also known as 4F2, or fusion-related protein 1) induced aggregation, with different energy requirements and with partial dependence on beta2 integrins. Previous studies have focused on the role of CD43 ligation in tyrosine phosphorylation. However, in the homotypic adhesion assay, although there is initial tyrosine phosphorylation, protein tyrosine kinase inhibitors did not block aggregation. Therefore, other signaling pathways were examined. CD43 ligation induced protein tyrosine dephosphorylation, and protein tyrosine phosphatase inhibitors blocked aggregation. Activation of MAP kinases was not necessary. Cytoskeletal inhibitors amplified aggregation. Protein kinase C (PKC) inhibitors amplified aggregation, implicating PKC as a negative regulator. CD43 ligation up-regulated surface adhesion molecules and enhanced CD29- and CD98-induced aggregation. Thus, CD43 participation in cell-cell adhesion is under stringent control, involving both surface events and several different intracellular signaling pathways, acting together to regulate the process. These mechanisms add a further dimension to the potential role of CD43 in tissue immune responses.  相似文献   

12.
Thrombospondin-1 (TSP-1), an extracellular matrix protein, has a multimodular structure and each domain specifies a distinct biological function through interaction with a specific ligand. In this study we found that exogenously added TSP-1 inhibits phorbol myristate acetate (PMA)/LPS-induced homotypic aggregation of human monocytic U937 cells, whereas the 70-kDa fragment of TSP-1 generated by the proteolytic cleavage of the intact molecule promotes the homotypic aggregation. The aggregation was also inhibited by anti-CD47 mAb or the 4N1K peptide, of which sequence is derived from the CD47-binding site of TSP-1 and absent in the 70-kDa fragment. In contrast, the augmented cell aggregation by the 70-kDa fragment was hampered by anti-CD36 mAb or antibody against the CD36-binding site of TSP-1. The cell aggregation of U937 cells was completely blocked, even in the presence of the 70-kDa fragment, by mAb against leukocyte function associated antigen-1 (LFA-1) or intercellular adhesion molecule-1 (ICAM-1). We therefore propose that TSP-1 may regulate LFA-1/ICAM-1-mediated cell adhesion of monocytes/macrophages by either the inhibitory effect through CD47 or the promoting effect through CD36 depending on which domain/fragment is functional in a given biological setting.  相似文献   

13.
CD44, a widely expressed cell surface glycoprotein, plays a major role in cell-cell adhesion, cell-substrate interaction, lymphocyte homing, and tumor metastasis. For tumor metastasis to occur through the blood vessel and lymphatic vessel pathway, the tumor cells must first adhere to endothelial cells. Recent studies have shown that high expression of CD44 in certain types of tumors is associated with the hematogenic spread of cancer cells. However, the functional relevance of CD44 to tumor cell metastasis remains unknown. In this study, we investigated the mechanisms of CD44 cross-linking-induced adhesion and transendothelial migration of tumor cells using MDA-MB-435S breast cancer cell line. Breast cancer cells were found to express high levels of CD44. Using flow cytometric analysis and immunofluorescence staining, we demonstrated that cross-linking of CD44 resulted in a marked induction of the expression of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) by exocytosis. These results were also observed with the Hs578T breast cancer cell line. Furthermore, LFA-1- and VLA-4-mediated adhesion and transendothelial cancer cell migration were also studied. Anti-LFA-1 mAb or anti-VLA-4 mAb alone had no effect on adhesion or transendothelial cancer cell migration, but were able to inhibit both of these functions when added together. This shows that CD44 cross-linking induces LFA-1 and VLA-4 expression in MDA-MB-435S cells and increases integrin-mediated adhesion to endothelial cells, resulting in the transendothelial migration of breast cancer cells. These observations provide direct evidence of a new function for CD44 that is involved in the induction of LFA-1 and VLA-4 expression by exocytosis in MDA-MB-435S cells. Because these induced integrins promote tumor cell migration into the target tissue, it may be possible to suppress this by pharmacological means, and thus potentially cause a reduction in invasive capability and metastasis.  相似文献   

14.
CD151, a member of the tetraspanin family proteins, tightly associates with integrin alpha3beta1 and localizes at basolateral surfaces of epithelial cells. We found that overexpression of CD151 in A431 cells accelerated intercellular adhesion, whereas treatment of cells with anti-CD151 mAb perturbed the integrity of cortical actin filaments and cell polarity. E-Cadherin puncta formation, indicative of filopodia-based adhesion zipper formation, as well as E-cadherin anchorage to detergent-insoluble cytoskeletal matrix, was enhanced in CD151-overexpressing cells. Levels of GTP-bound Cdc42 and Rac were also elevated in CD151-overexpressing cells, suggesting the role of CD151 in E-cadherin-mediated cell-cell adhesion as a modulator of actin cytoskeletal reorganization. Consistent with this possibility, engagement of CD151 by the substrate-adsorbed anti-CD151 mAb induced prominent Cdc42-dependent filopodial extension, which along with E-cadherin puncta formation, was strongly inhibited by calphostin C, a protein kinase C (PKC) inhibitor. Together, these results indicate that CD151 is involved in epithelial cell-cell adhesion as a modulator of PKC- and Cdc42-dependent actin cytoskeletal reorganization.  相似文献   

15.
The distribution, biochemical properties, and function of CD39 were characterized with the use of a new mAb termed 400. CD39 is an acidic (isoelectric point, approximately 4.2) glycoprotein of Mr approximately 78,000, containing approximately 24 kDa of N-linked oligosaccharide but no detectable O-linked sugars. CD39 was not expressed by resting blood T, B, or NK cells, neutrophils, or monocytes, but was expressed on activated NK cells, B cells, subsets of T cells, and T cell clones. Furthermore, the pattern of expression of CD39 was distinct from the "classic" activation Ag CD25 and CD71, inasmuch as it was expressed long after expression of CD25 and CD71 had returned to basal levels. CD39 was easily detectable on EBV-transformed B cell lines but was absent from pre-B and non-EBV-transformed B cell lines, most myeloid cell lines, and leukemic T cell lines. In lymphoid tissues, germinal center cells expressed little or no CD39, whereas some paracortical lymphocytes and most macrophages and dendritic cells were positive. CD39 was strongly expressed by endothelium in all tissues examined, including skin, and was present on some, but not all, endothelial cell lines propagated in vitro. Interestingly, mAb binding to certain epitopes on CD39 induced rapid homotypic adhesion that appeared to involve LFA-1 (CD11a/CD18), but was morphologically and kinetically distinct from that induced by PMA. Anti-CD39 mAb also induced homotypic adhesion in an CD11/CD18-EBV-transformed B cell line derived from a patient with severe leukocyte adhesion deficiency. This adhesion was unaffected by EDTA, suggesting that this pathway of anti-CD39-induced homotypic adhesion was not mediated by any of the known integrins. These studies suggest that CD39 is involved in the cellular signaling that regulates adhesion.  相似文献   

16.
CD40 mAb at subsaturating doses inhibit the growth of transformants of the M12 murine cell line expressing intact full length CD40 molecules (M12/CD40+ cells) but do not inhibit the growth of two M12 transformants expressing either a mutant CD40 cDNA missing most of the cytoplasmic tail (CD40/tailless) or a mutant cDNA with a substitution at residue 234 (CD40/234A, Ala for Thr). Using these transformants, we tested a panel of cytokines for the ability to mimic CD40 mAb. rIL-6 behaved like CD40 mAb and inhibited the growth of M12/CD40+ cells but not of CD40/tailless or CD40/234A mutants. The effect of IL-6 on M12/CD40+ cells not only required intact CD40 including threonine 234 but also was specific because IL-6 mAb blocked the inhibitory activity. The M12/CD40+ cells responsive to IL-6 expressed greater than 300,000 CD40 molecules/cells but, like M12/CD40-controls, expressed only small numbers (less than 50/cell) of high affinity IL-6R, indicating that CD40 is not a receptor for IL-6. Nevertheless, IL-6 utilizes intact CD40 efficiently when it signals these cells: treatment of M12/CD40+ cells with IL-6 induced increased phosphorylation of CD40. Conversely, triggering CD40 on M12/CD40+ cells leads to IL-6 production. Similar effects were evident in human CD40+ B cells: IL-6 increased the phosphorylation of CD40 in the IL-6-responsive cell line, CESS, and CD40 mAb induced IL-6 production in activated human B cells. Thus, CD40 may function to receive and regulate IL-6-dependent signals in B cells.  相似文献   

17.
《The Journal of cell biology》1995,129(4):1143-1153
beta 2 integrin (CD11a,b,c/CD18)-mediated cell adhesion is required for many leukocyte functions. Under normal circumstances, the integrins are nonadhesive, and become adhesive for their cell surface ligands, the intercellular adhesion molecules (ICAMs), or soluble ligands such as fibrinogen and iC3b, when leukocytes are activated. Recently, we defined a peptide derived from ICAM-2, which specifically binds to purified CD11a/CD18. Furthermore, this peptide strongly induces T cell aggregation mainly mediated by CD11a/CD18-ICAM-1 interaction, and natural killer cell cytotoxicity. In the present study, we show that the same ICAM-2 peptide also avidly binds to purified CD11b/CD18, but not to CD11c/CD18. This binding can be blocked by the CD11b antibody OKM10. The peptide strongly stimulates CD11b/CD18-ICAM-1-mediated cell aggregations of the monocytic cell lines THP-1 and U937. The aggregations are energy and divalent cation-dependent. The ICAM-2 peptide also induces CD11b/CD18 and CD11c/CD18-mediated binding of THP- 1 cells to fibrinogen and iC3b coated on plastic. These findings indicate that in addition to induction of CD11a/CD18-mediated cell adhesion, the ICAM-2 peptide may also serve as a "trigger" for high avidity ligand binding of other beta 2 integrins.  相似文献   

18.
Transmembrane signals generated following mAb binding to CD19, CD20, CD39, CD40, CD43, Leu-13 Ag, and HLA-D region gene products induced rapid and strong homotypic adhesion in a panel of human B cell lines. Lower levels of adhesion were also observed after engagement of CD21, CD22, and CD23. Adhesion induced by mAb binding to these Ag was identical with respect to the kinetics of adhesion and the morphology of the resulting cellular aggregates, and was distinct from PMA-induced adhesion in both of these properties. Adhesion was not observed in response to mAb binding to MHC class I, CD24, CD38, CD44, CD45RA, or CD72. In contrast to B cell lines, homotypic adhesion was not induced in two pre-B cell lines, in spite of their high level expression of CD19 and HLA-D. Adhesion induced by suboptimal stimulation through these surface Ag or by PMA was mediated primarily through LFA-1 and ICAM-1. However, optimal stimulation through CD19, CD20, CD39, CD40, and HLA-D induced strong homotypic adhesion that was not blocked by anti-LFA-1 mAb. This alternate pathway of adhesion was also observed in LFA-1-deficient cell lines and in the presence of EDTA, suggesting that adhesion was not mediated by integrins. Adhesion in response to engagement of cell-surface Ag was unaffected by H7 or genestein, but was significantly inhibited by staurosporine, and was completely ablated by sphingosine and herbimycin. These studies indicate that engagement of multiple B cell-surface molecules initiates a signal transduction cascade that involves tyrosine kinases but not protein kinase C, and which leads to homotypic adhesion. Furthermore, adhesion was mediated by at least two distinct cell-surface adhesion receptors: LFA-1/ICAM-1 and a heretofore unknown adhesion receptor.  相似文献   

19.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

20.
A very late activating antigen-alpha4 (CD49d) monoclonal antibody (mAb), BU49 was found to induce phosphorylation of a cAMP response element-binding protein (CREB) in the human monocyte-like cell line, U937. This phosphorylation of CREB was completely inhibited by a protein kinase A (PKA) inhibitor H-89 with the optimum concentration (completely inhibits PKA). Furthermore, BU49 strongly and rapidly (within 5 hr) induced homotypic cell aggregation in the U937 cells accompanied by CREB phosphorylation. This cell aggregation was also completely inhibited by the addition of H-89. Interestingly, both of two mAbs (mAb13 and 4B4) recognizing different epitopes on the CD29 (beta1 integrin) completely inhibited this aggregation at the late phase (18 to 24 hr) but not at the early phase (5 hr) after cultured with BU49. On the other hand, BU49 significantly enhanced interleukin-8 (IL-8) production from the U937 cells into the culture supernatant. In addition, this IL-8 production was significantly blocked in the presence of H-89 with the optimum concentration. However, a CD29 mAb which inhibits homotypic cell aggregation could not block this IL-8 production. Taken together, these findings indicate that BU49 induces CREB phosphorylation mainly mediated by PKA, which finally results in the induction of homotypic cell aggregation and the enhancement of IL-8 production. Furthermore, these findings also indicate that the enhancement of IL-8 production from the U937 cells induced by BU49 partially depends on CREB phosphorylation mainly mediated by PKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号