首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete larval development of the deep-sea sponge Stylocordyla borealis (from eggs to young sponges) was followed in sponges from the Antarctic waters of Terra Nova Bay. S. borealis shows a viviparous strategy which leads to young complete sponges incubated in the mother body, with cortex, spicules and choanocyte chambers. This development can be considered a K-strategy, which is usually employed by deep-sea organisms and cold-water benthic invertebrates.  相似文献   

2.
Summary Each choanocyte chamber of Petrosia ficiformis is formed by a slightly outpocked choanocyte epithelium and by a ring of three or four uniflagellated cone cells surrounding the apopyle. The apopyle opens into a small aphodus, which leads the water flow to larger excurrent canals. Pinacocytes of the incurrent canal system cover the basal surface of the choanocytes and separate them from the incurrent canals and the mesenchyme. The water flows into the chambers by pores in the pinacocyte cover and then through gaps between adjacent choanocytes. To our knowledge this is the first report of a leuconoid canal system in which choanocyte chambers are covered by a pinacocyte epithelium of the incurrent canal system that isolates the chambers from the mesenchyme. A future comprehensive revision of the types of canal systems in sponges seems to be necessary. Permanent affiliation: Department of Biology and Health Sciences, University of Hartford, West Hartford, CT 06117, USA  相似文献   

3.
Time-lapse cinemicrography was used to record the active movements of cells in living intact sponges. Each of the three main cell types (pinacocytes, mesohyl cells, and choanocytes) continuously moved and rearranged themselves so that the internal anatomy of the sponge was continuously remodeled. The shape and appearance of the sponges anatomical structures often changed substantially within a few hours. The most motile were the mesohyl cells, with many moving as fast as one cell-length per minute (15 microns/min). Mesohyl cell locomotion was often accompanied by displacements of spicules, canals, and choanocyte chambers; the patterns of these displacements suggested that the mesohyl cells were providing the motive forces for these rearrangements. The locomotion of the pinacocytes varied according to position: those along the outer sponge margins were most active, whereas those in other parts of the surface moved relatively little. Choanocytes were never observed to undergo independent locomotion but were always found grouped together in choanocyte chambers. These choanocyte chambers interacted with pinacocytes and mesohyl cells to form excurrent canals, which continuously moved, fused with, and branched from one another. These observations suggest that the experimental phenomenon of sponge cell-reaggregation and reconstitution, discovered by H. V. Wilson, represents an extreme version of morphogenetic processes that normally go on continuously within intact sponges. The results from the present study also suggest that these cellular rearrangements are controlled by active cell movements and behavioral responses that include but are not limited to selective cell adhesion.  相似文献   

4.
Despite the common assumption that most Haplosclerida are viviparous sponges, this study of the reproductive cycle of Haliclona fulva demonstrates that this species is actually oviparous and gonochoric. Intriguingly, not a single male was recorded in 15 months of sampling. Oogenesis is synchronous, starting in late April and terminating in September. Asexual reproduction is represented by cyclic budding, which occurs from late November to early March. During the season of asexual reproduction, the reproductive effort represents from 0.21% to 1.49% of the parental tissue, with the highest values being recorded in winter. During the season of sexual reproduction, the female reproductive effort ranges 0.05–1.15%, with the highest effort appearing in early summer. However, no significant correlation between reproductive efforts and seawater temperature fluctuations could be detected. We describe the ultrastructural morphogenesis of the buds for the first time in this species. This process is asynchronous, with buds of variable size being attached to the maternal apical surface via a short stalk. Young buds lack any particular anatomical organization, whereas bud maturity is characterized by the development of mesohyl and by the appearance of an increasing number and volume of lacunae in the central part of each bud. At this stage, buds harbor numerous small choanocyte chambers scattered throughout the inner region, and all cell types known from the mesohyl of parental sponges: microgranular cells, granular cells, archaeocytes, endopinacocytes and exopinacocytes, central cells, and sclerocytes.  相似文献   

5.
Abstract. Recent molecular data suggest that the Porifera is paraphyletic (Calcarea+Silicea) and that the Calcarea is more closely related to the Metazoa than to other sponge groups, thereby implying that a sponge‐like animal gave rise to other metazoans. One ramification of these data is that calcareous sponges could provide clues as to what features are shared among this ancestral metazoan and higher animals. Recent studies describing detailed morphology in the Calcarea are lacking. We have used a combination of microscopy techniques to study the fine structure of Syconcoactum Urban 1905, a cosmopolitan calcareous sponge. The sponge has a distinct polarity, consisting of a single tube with an apically opening osculum. Finger‐like chambers, several hundred micrometers in length, form the sides of the tube. The inner and outer layers of the chamber wall are formed by epithelia characterized by apical–basal polarity and occluding junctions between cells. The outer layer—the pinacoderm—and atrial cavity are lined by plate‐like cells (pinacocytes), and the inner choanoderm is lined by a continuous sheet of choanocytes. Incurrent openings of the sponge are formed by porocytes, tubular cells that join the pinacoderm to the choanoderm. Between these two layers lies a collagenous mesohyl that houses sclerocytes, spicules, amoeboid cells, and a progression of embryonic stages. The morphology of choanocytes and porocytes is plastic. Ostia were closed in sponges that were vigorously shaken and in sponges left in still water for over 30 min. Choanocytes, and in particular collar microvilli, varied in size and shape, depending on their location in the choanocyte chamber. Although some of the odd shapes of choanocytes and their collars can be explained by the development of large embryos first beneath and later on top of the choanocytes, the presence of many fused collar microvilli on choanocytes may reflect peculiarities of the hydrodynamics in large syconoid choanocyte chambers. The unusual formation of a hollow blastula larva and its inversion through the choanocyte epithelium are suggestive of epithelial rather than mesenchymal cell movements. These details illustrate that calcareous sponges have characteristics that allow comparison with other metazoans—one of the reasons they have long been the focus of studies of evolution and development.  相似文献   

6.
Choanoflagellates and sponges feed by filtering microscopic particles from water currents created by the flagella of microvillar collar complexes situated on the cell bodies of the solitary or colonial choanoflagellates and on the choanocytes in sponges. The filtering mechanism has been known for more than a century, but only recently has the filtering process been studied in detail and also modelled, so that a detailed picture of the water currents has been obtained. In the solitary and most of the colonial choanoflagellates, the water flows freely around the cells, but in some forms, the cells are arranged in an open meshwork through which the water can be pumped. In the sponges, the choanocytes are located in choanocyte chambers (or choanocyte areas) with separate incurrent and excurrent canals/pores located in a larger body, which enables a fixed pattern of water currents through the collar complexes. Previous theories for the origin of sponges show evolutionary stages with choanocyte chambers without any opening or with only one opening, which makes separation of incurrent and excurrent impossible, and such stages must have been unable to feed. Therefore a new theory is proposed, which shows a continuous evolutionary lineage in which all stages are able to feed by means of the collar complexes.  相似文献   

7.
The choanocyte chambers of the marine spongeReniera sp. protrude with their curved outer surface free into the incurrent canals. The water is sucked into the chambers by cavities between the choanocytes. Particles up to 1 µm in diameter may enter the chambers with the water current. These particles are trapped on the outer surface of the choanocyte collars and are ingested by the choanocytes and processes of the pinacocyte epithelium of the incurrent canal system, which project into the chambers. Bigger particles are retained in the incurrent canals mainly on the outer surface of the choanocyte chambers. They are ingested by pinacocytes of the canal wall and transported to cells of the mesenchyme. The present investigation shows the great importance of the pinacocyte epithelium of the incurrent canal system for suspension feeding inReniera sp.  相似文献   

8.
Uwe Saller 《Zoomorphology》1989,108(5):291-296
Summary When growing in the sunlight, some specimens of Spongilla lacustris are coloured green due to the presence of symbiotic unicellular chlorellae. The algae live inside most sponge cells. The chlorellae were extracted from green sponges, cultivated, added to algae-free sponges and fixed after different incubation times. In this way the uptake of the algae, their distribution and their final whereabouts in the mesenchymatic cells could be followed by in vivo microscopy, phase-contrast microscopy and electron microscopy. A few minutes after addition, the chlorellae can be found inside the choanocyte chambers. Here they are taken up by the cell bodies and collars of the choanocytes. Pinacocytes are also involved in the uptake. The distribution of algae results from a specific transmission from the donor cell to the receiver cell. The chlorellae are not released from their host vacuoles until they are extensively enclosed by the cell taking them up. Six hours after addition, all sponge cells contain algae except granulocytes, microscleroblasts, the pinacocytes of the peripheral rim region and those of the pinacoderm. The chlorellae are able to divide inside the sponge cells.Abbreviations StM Stereo-microscopical photograph - PhC Phase-contrast microscopical photograph - EM Electron microscopical photograph  相似文献   

9.
《Journal of morphology》2017,278(12):1682-1688
The use of sponges in biotechnological processes is limited by the supply problem, and sponge biomass production is becoming a current topic of research. The distinction between characteristics for growth and growth arrest is also important for environmental monitoring. In this study, we analyze the morphology of the digitate outgrowths from the sponge Haliclona sp . The sponge Haliclona sp . was successfully cultivated for 14 months in a closed system. The morphological characterization of growth arrest was performed after submitting explants to starvation‐stress for approximately 2 weeks, to correlate morphology with growth and growth arrest. The digitate outgrowth showed three distinct regions: mature (MR), transition (TR) and immature (IR). Our data suggest a growth developmental program, with collagen fascicles guiding axial growth in IR, followed by progressive development of choanocyte chambers and large aquiferous systems at the more mature proximal region (choanosome). The intercalation of choanocyte chambers and small aquiferous systems inside collagen fascicles previously originated at the IR region can be responsible for thickening expansion and conversion of the collagen fascicles into columnar choanosome in MR. The growth arrest after starvation‐stress assay showed morphological changes in the IR corroborating collagen in the extreme tip of the digitate outgrowth as an important role in guiding of axial growth of Haliclona sp . The identification of distinct morphologies for growth and growth arrest suggest a growth developmental program, and these data could be useful for further investigations addressing sponge biomass gain and environmental monitoring.  相似文献   

10.
Sponges often exhibit tissue regression in response to stressful conditions. This study investigated whether handling stress invoked tissue regression in Ianthella basta and assessed whether sponges could recover from this regressed tissue state. Six necrotic specimens and 12 healthy explants were collected at Orpheus Is. Australia and transported to aquarium facilities. Sponges were photographed daily and an integrated density (ID) measurement was used to quantify tissue regression. Histological samples were taken from sponge explants to compare cellular organization. Bacterial communities of regressed and recovered tissue were compared using Denaturing Gradient Gel Electrophoresis (DGGE). After 12 h both necrotic and healthy sponges displayed substantial tissue regression. However, within 72 h all sponges recovered to their original condition. The ID of the sponge tissue doubled, confirming tissue recovery in I. basta. Sponges affected by tissue regression had significantly fewer choanocyte chambers and more densely packed granulated cells than recovered sponges. DGGE revealed the same microbial symbionts in both regressed and recovered sponges. Handling stress associated with collection and transportation is sufficient to invoke tissue regression in this species, but sponges can rapidly recover. This study contributes to our understanding of how sponges respond to environmental pressures, influencing population resilience and persistence.  相似文献   

11.
Archaeocytes from the spongeEphydatia fluviatilis were dissociated and then isolated on Ficoll density gradients. Their aggregation and reconstitution processes were studied by transmission electron microscopy to determine their capabilities for differentiation.Archaeocyte aggregates follow a well defined sequence of differentiation to generate the characteristic structures of a sponge. Pinacoderm is the first structure to be regenerated and appears progressively at the surface of the 12 h aggregates. Pinacocytes which have differentiated in archaeocyte aggregates are identical to native ones except that the nucleolus remains in most cells. The choanocytes appear only after 24 h by a two step process. First, small cells (choanoblasts) are formed from archaeocytes by mitosis. These cells then transform into fully differentiated choanocytes possessing collars and flagella. The early choanocyte chambers are small, irregular and randomly dispersed in the aggregates. Finally, collencytes and sclerocytes begin to appear just before the aggregates spread on the substrate.The differentiation of a suspension of pure archaeocytes is a unique model system to study sponge cell differentiation and has allowed us to demonstrate that archaeocytes isolated from developed sponges maintain the capacity to differentiate even though this capacity is not usually expressed.  相似文献   

12.
The budding process has been studied in two congeneric Mediterranean species belonging to Tethya from different sampling sites: Marsala and Venice Lagoons (Tethya citrina); Marsala Lagoon and Porto Cesareo Basin (Tethya aurantium). Buds, connected to the adult by a spiculated stalk, differ between the two species in morphology and size, since those of T. citrina are small with elongated bodies, showing only a few spicules protruding from the apical region, whereas those of T. aurantium are round, larger, and show spicules radiating from the peripheral border. In T. citrina, cells with inclusions, varying in electron density and size, represent the main cell types of the buds. In T. aurantium, the cell component shows a major diversification, resulting from spherulous cells, grey cells, vacuolar cells and peculiar micro-vesicle cells. Neither canals nor choanocyte chambers were observed in the buds of the two species. In T. citrina, bud production is similar in both sampling sites. In T. aurantium, budding occurs more rarely in Porto Cesareo Basin, probably in relation with environmental factors, such as the covering of the cortex by sediment and micro-algae. Finally, in the buds of both species, the spicule size does not differ from that of the cortex of the adult sponges, further supporting the main involvement of the cortex in organizing the skeletal architecture of the buds.  相似文献   

13.
Summary Spermatogenesis of the marine spongeHalichondria panicea begins with the break up of choanocyte chambers, choanocytes constituting the origin of spermatogonia. The transition from choanocytes to spermatogonia is direct, without cell division. Already the spermatogonia are flagellated. The ensuing large aggregates of spermatogonia are enclosed by spermatocyst-building cells. Further development takes place within the spermatocysts, mostly arranged in fields which, however, lack any developmental gradient. Within a single spermatocyst development is mostly synchronous. Spermatogonia transform into first order spermatocytes directly. The transition from spermatid to spermatozoon is characterized by an unusual prolongation of the chromatin, often resulting in a helical form of the chromosome material and a strong enlargement of the mitochondria which align with the nucleus, leading to an irregular shape of the spermatozoon. Another exceptional feature is the virtual absence of a Golgi apparatus during all stages of spermatogenesis. TheH. panicea investigated here contained only male reproductive elements, thus appear to be gonochorists. Some features of the spermatogenesis ofH. panicea, such as dissolving choanocyte chambers, the enclosure of spermatogonia by spermatocyst-building cells and the formation of a synaptonemal complex in first order spermatocytes occur in other sponge species as well; however, the early presence of flagella in spermatogonia, the absence of the Golgi apparatus and the later irregular development of nuclei, mitochondria and the spermatozoa themselves represent features hitherto not observed in sponges.  相似文献   

14.
Summary Specimens of Haliclona elegans (Bowerbank, 1866) are covered by a thin, double layered dermal membrane extending over large subdermal spaces. The pores in the dermal membrane are formed by single porocytes with one or sometimes several pores in the center of the cell. The subjacent tissue shows a faintly developed mesenchyme and numerous big choanocyte chambers projecting into lacunar spaces of the incurrent canal system. The outer surface of the chambers is directly covered by the pinacocyte epithelium of the incurrent canal wall, which also separates them completely from the mesenchyme. Water influx into the chambers is guaranteed by prosopylar openings in the pinacocyte cover at the outer chamber surface. The chambers are connected to the excurrent canal system in the eurypylous way by wide apopyles, each of which is surrounded by a small ring of flagellated cone cells. About 15% of the choanocyte chambers in H. elegans contain central cells, which are thought to derive from migrating pinacocytes of the canal systems.  相似文献   

15.
Abstract. It is widely accepted that multicellular animals (metazoans) constitute a monophyletic unit, deriving from ancestral choanoflagellate‐like protists that gave rise to simple choanocyte‐bearing metazoans. However, a re‐assessment of molecular and histological evidence on choanoflagellates, sponge choanocytes, and other metazoan cells reveals that the status of choanocytes as a fundamental cell type in metazoan evolution is unrealistic. Rather, choanocytes are specialized cells that develop from non‐collared ciliated cells during sponge embryogenesis. Although choanocytes of adult sponges have no obvious homologue among metazoans, larval cells transdifferentiating into choanocytes at metamorphosis do have such homologues. The evidence reviewed here also indicates that sponge larvae are architecturally closer than adult sponges to the remaining metazoans. This may mean that the basic multicellular organismal architecture from which diploblasts evolved, that is, the putative planktonic archimetazoan, was more similar to a modern poriferan larva lacking choanocytes than to an adult sponge. Alternatively, it may mean that other metazoans evolved from a neotenous larva of ancient sponges. Indeed, the Porifera possess some features of intriguing evolutionary significance: (1) widespread occurrence of internal fertilization and a notable diversity of gastrulation modes, (2) dispersal through architecturally complex lecithotrophic larvae, in which an ephemeral archenteron (in dispherula larvae) and multiciliated and syncytial cells (in trichimella larvae) occur, (3) acquisition of direct development by some groups, and (4) replacement of choanocyte‐based filter‐feeding by carnivory in some sponges. Together, these features strongly suggest that the Porifera may have a longer and more complicated evolutionary history than traditionally assumed, and also that the simple anatomy of modern adult sponges may have resulted from a secondary simplification. This makes the idea of a neotenous evolution less likely than that of a larva‐like choanocyte‐lacking archimetazoan. From this perspective, the view that choanoflagellates may be simplified sponge‐derived metazoans, rather than protists, emerges as a viable alternative hypothesis. This idea neither conflicts with the available evidence nor can be disproved by it, and must be specifically re‐examined by further approaches combining morphological and molecular information. Interestingly, several microbial lin°Cages lacking choanocyte‐like morphology, such as Corallochytrea, Cristidiscoidea, Ministeriida, and Mesomycetozoea, have recently been placed at the boundary between fungi and animals, becoming a promising source of information in addition to the choanoflagellates in the search for the unicellular origin of animal multicellularity.  相似文献   

16.
Three species of glass sponges (Class Hexactinellida) form massive deep‐water reefs by growing on the skeletons of past generations, with new growth largely vertical and away from sediment that buries the lower portions. Growth is therefore essential for reef health, but how glass sponges produce new skeleton or tissue is not known. We used fluorescence, light, and electron microscopy to study skeletal and tissue growth in the reef‐forming glass sponge Aphrocallistes vastus. The sponge consists of a single large tube (the osculum), usually with several side branches, each of which can function as an effective excurrent vent. New tissue forms at the tips of each of these extensions, but how this occurs in a syncytial animal, and how the tubes expand laterally as the sponge gets larger, are both unknown. The fluorescent dye PDMPO labeled more spicule types in the tips of the sponge than elsewhere, indicating growth that was concentrated at the edge of the osculum. New tissue production was tracked using the thymidine analog EdU. EdU‐labeled nuclei were found predominantly at the edge or lip of the osculum. In that region new flagellated chambers were formed from clusters of choanoblasts that spread out around the enlarging chamber. In cellular sponges clusters of choanocytes form flagellated chambers through several rounds of mitotic divisions, and also by immigration of mesohyl cells, to expand the chamber to full size. By contrast, chambers in glass sponges expand as choanoblasts produce enucleate collar bodies to fill them out. Growing chambers with enucleate structures may be an adaptation to life in the deep sea if chambers with cells, and therefore more nuclei, are costly to build.  相似文献   

17.
18.
Sponges are considered to be filter feeders like their nearest protistan relatives, the choanoflagellates. Specialized "sieve" cells (choanocytes) have an apical collar of tightly spaced, rodlike microvilli that surround a long flagellum. The beat of the flagellum is believed to draw water through this collar, but how particles caught on the collar are brought to the cell surface is unknown. We have studied the interactions that occur between choanocytes and introduced particles in the large feeding chambers of a syconoid calcareous sponge. Of all particles, only 0.1-microm latex microspheres adhered to the collar microvilli in large numbers, but these were even more numerous on the choanocyte surface. Few large particles (0.5- and 1.0-microm beads and bacteria) contacted the collar microvilli; most were phagocytosed by lamellipodia at the lateral or apical cell surface, and clumps of particles were engulfed by pseudopodial extensions several micrometers from the cell surface. Although extensions of the choanocyte apical surface up to 16 microm long were found, most were 4 microm long, twice the height of the collar microvilli. These observations offer a different view of particle uptake in sponges, and suggest that, at least in syconoid sponges, uptake of particles is less dependent on the strictly sieving function of the collar microvilli.  相似文献   

19.
The budding process of the tetillid sponge Cinachyrella cavernosa was studied for one year in the low intertidal zone near Mhapan (15°55′27.48″N, 73°33′29.89″E), on the central west coast of India. The sponges showed the highest budding frequency when the average water temperature of intertidal rock pools was 32.4±0.23°C (February–March), followed by a significant decrease in budding frequency at 28.2±0.12°C (April–July), and no budding at ≤25.9±0.12°C (August–November). Stepwise multiple regression analysis of physico‐chemical factors revealed temperature as the most prominent factor regulating the intensity of budding. Based on size and morphology, three stages of sponge buds were defined. The production of buds was found to be asynchronous, as adult sponges possessed buds of all three stages. Differences among these stages were examined at ultrastructural (in terms of spicules) and molecular (in terms of RNA/DNA) levels. Stage I (<0.5 mm dia‐meter) buds showed a complete absence of microscleres (sigmaspires), whereas stage II (0.5–1 mm) and stage III (>1 mm) buds contained all spicules characteristic of the adult sponge. There was a significant increase in RNA/DNA ratio from stage I to III, suggestive of a progressive increase in physiological activity during the developmental process. Additionally, we studied post‐settlement bud growth under field and laboratory conditions. Newly settled buds displayed a lower average‐specific growth rate in the field, owing to variability in environmental conditions, but more rapid growth under controlled conditions in the laboratory. This study highlights the role of abiotic factors in regulating the budding process and stresses the ecological significance of budding in maintaining natural sponge populations. Our data suggest that an increased frequency of budding under stressful conditions, such as high temperature, is an advantageous adaptation for these sponges. Buds showed rapid development, as no metamorphosis is involved, and retained the genotype of the parents, yielding high reproductive outputs and survival rates.  相似文献   

20.
Summary The freshwater sponges (Spongillidae) feed by filtering out small particles from the water passing through them by means of strainer devices in the flagellated chambers. These are filamentous, fine-meshed structures at the distal ends of the choanocyte collars formed of a mucous material similar to that in the glycocalyx. Each strainer separates its flagellated chamber into an outer and an inner zone. The strainers are an extremely efficient filtering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号