首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restraint-based comparative modeling was used for calculation and visualization of the H4-H5-loop of Na+/K+-ATPase from mouse brain (Mus musculus, adult male brain, alpha2-isoform) between the amino acid residues Cys 336 and Arg 758 in the E1 conformation The structure consists of two well separated parts. The N-domain is formed by a seven-stranded antiparallel beta-sheet with two additional beta-strands and five alpha-helices sandwiching it, the P-domain is composed of a typical Rossman fold. The ATP-binding site was found on the N-domain to be identical in both alpha2- and alpha1-isoforms. The phosphorylation Asp 369 residue was found in the central part of the P-domain, located at the C-terminal end of the central beta-sheet. The distance between the alpha-carbon of Phe 475 at the ATP-binding site and the alpha-carbon of Asp 369 at the phosphorylation site is 3.22 nm. A hydrogen bond between the oxygen atom of Asp 369 and the nitrogen atom of Lys 690 was clearly detected and assumed to play a key role in maintaining the proper structure of the phosphorylaton site in E1 conformation.  相似文献   

2.
Na+,K+-ATPase (pig alpha1,beta1) has been expressed in the methylotrophic yeast Pichia pastoris. A protease-deficient strain was used, recombinant clones were screened for multicopy genomic integrants, and protein expression, and time and temperature of methanol induction were optimized. A 3-liter culture provides 300-500 mg of membrane protein with ouabain binding capacity of 30-50 pmol mg-1. Turnover numbers of recombinant and renal Na+,K+-ATPase are similar, as are specific chymotryptic cleavages. Wild type (WT) and a D369N mutant have been analyzed by Fe2+- and ATP-Fe2+-catalyzed oxidative cleavage, described for renal Na+,K+-ATPase. Cleavage of the D369N mutant provides strong evidence for two Fe2+ sites: site 1 composed of residues in P and A cytoplasmic domains, and site 2 near trans-membrane segments M3/M1. The D369N mutation suppresses cleavages at site 1, which appears to be a normal Mg2+ site in E2 conformations. The results suggest a possible role of the charge of Asp369 on the E1 <--> E2 conformational equilibrium. 5'-Adenylyl-beta,gamma-imidodi-phosphate(AMP-PNP)-Fe2+-catalyzed cleavage of the D369N mutant produces fragments in P (712VNDS) and N (near 440VAGDA) domains, described for WT, but only at high AMP-PNP-Fe2+ concentrations, and a new fragment in the P domain (near 367CSDKTGT) resulting from cleavage. Thus, the mutation distorts the active site. A molecular dynamic simulation of ATP-Mg2+ binding to WT and D351N structures of Ca2+-ATPase (analogous to Asp369 of Na+,K+-ATPase) supplies possible explanations for the new cleavage and for a high ATP affinity, which was observed previously for the mutant. The Asn351 structure with bound ATP-Mg2+ may resemble the transition state of the WT poised for phosphorylation.  相似文献   

3.
Na+/K+ -ATPase, reconstituted into phospholipid vesicles, has been used to study the localisation of binding sites of ligands involved in the phosphorylation reaction. Inside-out oriented Na+/K+ -ATPase molecules are the only population in this system, which can be phosphorylated, as the rightside-out oriented as well as the non-incorporated enzyme molecules are inhibited by ouabain. In addition, the right-side-out oriented Na+/K+ -ATPase molecules have their ATP binding site intravesicularly and are thus not accessible to substrate added to the extravesicular medium. Functional binding sites for the following ligands have been demonstrated: (i) Potassium, acting at the extracellular side with high affinity (stimulating the dephosphorylation rate of the E2P conformation) and low affinity (inducing the non-phosphorylating E2K complex). (ii) Potassium, acting at the cytoplasmic side with both high and low affinity. The latter sites are also responsible for the formation of an E2K complex and complete with Na+ for its binding sites. (iii) Sodium at the cytoplasmic side responsible for stimulation of the phosphorylation reaction. (iv) Sodium (and amine buffers) at the extracellular side enhancing the phosphorylation level of Na+/K+ -ATPase where choline chloride has no effect. (v) Magnesium at the cytoplasmic side, stimulating the phosphorylation reaction and inhibiting it above optimal concentrations.  相似文献   

4.
We have shown that ouabain activates Src, resulting in subsequent tyrosine phosphorylation of multiple effectors. Here, we tested if the Na+/K+-ATPase and Src can form a functional signaling complex. In LLC-PK1 cells the Na+/K+-ATPase and Src colocalized in the plasma membrane. Fluorescence resonance energy transfer analysis indicated that both proteins were in close proximity, suggesting a direct interaction. GST pulldown assay showed a direct, ouabain-regulated, and multifocal interaction between the 1 subunit of Na+/K+-ATPase and Src. Although the interaction between the Src kinase domain and the third cytosolic domain (CD3) of 1 is regulated by ouabain, the Src SH3SH2 domain binds to the second cytosolic domain constitutively. Functionally, binding of Src to either the Na+/K+-ATPase or GST-CD3 inhibited Src activity. Addition of ouabain, but not vanadate, to the purified Na+/K+-ATPase/Src complex freed the kinase domain and restored the Src activity. Consistently, exposure of intact cells to ouabain apparently increased the distance between the Na+/K+-ATPase and Src. Concomitantly, it also stimulated tyrosine phosphorylation of the proteins that are associated with the Na+/K+-ATPase. These new findings illustrate a novel molecular mechanism of signal transduction involving the interaction of a P-type ATPase and a nonreceptor tyrosine kinase.  相似文献   

5.
The fluorescein 5'-isothiocyanate (FITC)-labeled lamb kidney Na+/K+-ATPase has been used to investigate enzyme function and ligand-induced conformational changes. In these studies, we have determined the effects of two monoclonal antibodies, which inhibit Na+/K+-ATPase activity, on the conformational changes undergone by the FITC-labeled enzyme. Monitoring fluorescence intensity changes of FITC-labeled enzyme shows that antibody M10-P5-C11, which inhibits E1 approximately P intermediate formation (Ball, W.J. (1986) Biochemistry 25, 7155-7162), has little effect on the E1 in equilibrium E2 transitions induced by Na+, K+, Mg2+ Pi or Mg2+. ouabain. The M10-P5-C11 epitope, which appears to reside near the ATP-binding site, does not significantly participate in these ligand interactions. In contrast, we find that antibody 9-A5 (Schenk, D.B., Hubert, J.J. and Leffert, H.L. (1984) J. Biol. Chem. 259, 14941-14951) inhibits both the Na+/K+-ATPase and p-nitrophenylphosphatase activity. Its binding produces a 'Na+-like' enhancement in FITC fluorescence, reduces the ability of K+ to induce the E1 in equilibrium E2 transition and converts E2.K+ to an E1 conformation. Mg2+ binding to the enzyme alters both the conformation of this epitope region and its coupling of ligand interactions. In the presence of Mg2+, 9-A5 binding stabilizes an E1.Mg2+ conformation such that K+-, Pi- and ouabain-induced E1----E2 or E1----E2-Pi transitions are inhibited. Oubain and Pi added together overcome this stabilization. These studies indicate that the 9-A5 epitope participates in the E1 in equilibrium E2 conformational transitions, links Na+-K+ interactions and ouabain extracellular binding site effects to both the phosphorylation site and the FITC-binding region. Antibody-binding studies and direct demonstration of 9-A5 inhibition of enzyme phosphorylation by [32P]Pi confirm the results obtained from the fluorescence studies. Antibody 9-A5 has also proven useful in demonstrating the independence of Mg2+ ATP and Mg2+Pi regulation of ouabain binding. In addition, [3H]ouabain and antibody-binding studies demonstrate that FITC-labeling alters the enzyme's responses to Mg2+ as well as ATP regulation.  相似文献   

6.
The segment (708)TGDGVNDSPALKK(720) in the alpha-subunit P domain of Na,K-ATPase is highly conserved among cation pumps, but little is known about its role in binding of Mg(2+) or ATP and energy transduction. Here, 11 mutations of polar residues are expressed at reduced temperature in yeast with preserved capacities for high affinity binding of ouabain and ATP, whereas the Thr(708) --> Ser mutation and alterations of Asp(714) abolish all catalytic reactions. In mutations of Asp(710) and Asn(713), ATP affinity is preserved or increased, whereas Na,K-ATPase activity is severely reduced. Assay of phosphorylation from ATP in the presence of oligomycin shows that Asp(710) contributes to coordination of Mg(2+) during transfer of gamma-phosphate to Asp(369) in the high energy Mg.E(1)P[3Na] intermediate and that Asn(713) is involved in these processes. In contrast, Asp(710) and Asp(713) do not contribute to Mg(2+) binding in the E(2)P.ouabain complex. Transition to E(2)P thus involves a shift of Mg(2+) coordination away from Asp(710) and Asn(713), and the two residues become more important for hydrolysis of the acyl phosphate bond at Asp(369). The Asp(710) --> Ala mutation blocks interaction with vanadate, whereas Asn(713) --> Ala interferes with phosphorylation from P(i) of the E(2).ouabain complex, showing that the GDGVND segment is required for stabilization of the transition state and for the phosphorylation reaction. The Asp(710) --> Ala mutation also interferes with transmission of structural changes to the ouabain site and reduces the affinity for binding of Tl(+) 2- to 3-fold, suggesting a role in transmission of K(+) stimulation of phospho-enzyme hydrolysis from transmembrane segment 5 to the P domain.  相似文献   

7.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

8.
It is known that the addition of NaCl with oligomycin or ATP stimulates ouabain-sensitive and K+-dependent p-nitrophenylphosphatase (pNPPase) activity of Na+/K+-ATPase. We investigated the mechanism of the stimulation. The combination of oligomycin and NaCl increased the affinity of pNPPase activity for K+. When the ratio of Na+ to Rb+ was 10 in the presence of oligomycin, Rb+-binding and pNPPase activity reached a maximal level and Na+ was occluded. Phosphorylation of Na+/K+-ATPase by p-nitrophenylphosphate (pNPP) was not affected by oligomycin. Because oligomycin stabilizes the Na+-occluded E1 state of Na+/K+-ATPase, it seemed that the Na+-occluded E1 state increased the affinity of the phosphoenzyme formed from pNPP for K+. On the other hand, the combination of ATP and NaCl also increased the affinity of pNPPase for K+ and activated ATPase activity. Both activities were affected by the ligand conditions. Oligomycin noncompetitively affected the activation of pNPPase by NaCl and ATP. Nonhydrolyzable ATP analogues could not substitute for ATP. As NaE1P, which is the high-energy phosphoenzyme formed from ATP with Na+, is also the Na+-occluded E1 state, it is suggested that the Na+-occluded E1 state increases the affinity of the phosphoenzyme from pNPP for K+ through the interaction between alpha subunits. Therefore, membrane-bound Na+/K+-ATPase would function as at least an (alphabeta)2-diprotomer with interacting alpha subunits at the phosphorylation step.  相似文献   

9.
We have addressed the question of whether the Na/K+-ATPase in the human erythrocyte is in a state of near-equilibrium by varying the extracellular ratio of Na+ and K+ and following the cytosolic phosphorylation potential by 31P-NMR and by combined enzymatic colorimetric measurements. There was no correlation at room temperature between the extracellular Na+/K+ ratio and the cytosolic phosphorylation potential measured either by NMR or alternative methods. The cytosolic phosphorylation potential measured by NMR was 4100 +/- 1300 (S.E.) M-1 at an extracellular K+ concentration of 5.9 mM (Na+/K+ ratio of 24.3) and 2800 +/- 700 (S.E.) M-1 at 75 mM extracellular K+ (Na+/K+ ratio of 0.99). The chemically determined phosphorylation potential was 6400 +/- 1200 (S.E.) and 5000 +/- 700 (S.E.) M-1 at 5.9 and 75 mM extracellular K+, respectively. Omission of Ca2+ from the buffer solutions did not affect the results. A consistent finding in this study was that the NMR-determined value of ATP was about 10-20% lower than the value determined enzymatically on perchloric acid extracts. The inorganic phosphate (Pi) was fully NMR visible.  相似文献   

10.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

11.
Choline chloride, 100 mM, stimulates Na+/K(+)-ATPase activity of a purified dog kidney enzyme preparation when Na+ is suboptimal (9 mM Na+ and 10 mM K+) and inhibits when K+ is suboptimal (90 mM Na+ and 1 mM K+), but has a negligible effect at optimal concentrations of both (90 mM Na+ and 10 mM K+). Stimulation occurs at low Na+ to K+ ratios, but not at those same ratios when the actual Na+ concentration is high (90 mM). Stimulation decreases or disappears when incubation pH or temperature is increased or when Li+ is substituted for K+ or Rb+. Choline+ also reduces the Km for MgATP at the low ratio of Na+ to K+ but not at the optimal ratio. In the absence of K+, however, choline+ does not stimulate at low Na+ concentrations: either in the Na(+)-ATPase reaction or in the E1 to E2P conformational transition. Together, these observations indicate that choline+ accelerates the rate-limiting step in the Na+/K(+)-ATPase reaction cycle, K(+)-deocclusion; consequently, optimal Na+ concentrations reflect Na+ accelerating that step also. Thus, the observed K0.5 for Na+ includes high-affinity activation of enzyme phosphorylation and low-affinity acceleration of K(+)-deocclusion. Inhibition of Na+/K(+)-ATPase and K(+)-nitrophenylphosphatase reactions by choline+ increases as the K(+)-concentration is decreased; the competition between choline+ and K+ may represent a similar antagonism between conformations selected by choline+ and by K+.  相似文献   

12.
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.  相似文献   

13.
Thallium binding to native and radiation-inactivated Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The number of high-affinity K+-binding sites on purified Na+/K+-ATPase from pig kidney outer medulla has been assessed by measurement of equilibrium binding of thallous thallium, Tl+, under conditions (low ionic strength, absence of Na+ and Tris+) where the enzyme is in the E2-form. Na+/K+-ATPase has two identical Tl+ sites per ADP site, and the dissociation constant varies between 2 and 9 microM. These values are identical to those for Tl+ occlusion found previously by us, indicating that all high-affinity binding leads to occlusion. The specific binding was obtained after subtraction of a separately characterized unspecific adsorption of Tl+ to the enzyme preparations. Radiation inactivation leads to formation of modified peptides having two Tl+-binding sites with positive cooperativity, the second site-dissociation constant approximating that for the native sites. The radiation inactivation size (RIS) for total, specific Tl+ binding is 71 kDa, and the RIS for Tl+ binding with original affinity is approx. 190 kDa, equal to that of Na+/K+-ATPase activity and to that for Tl+ occlusion with native affinity. This latter RIS value confirms our recent theory that in situ the two catalytic peptides of Na+/K+-ATPase are closely associated. The 71 kDa value obtained for total Tl+ sites is equal to that for total binding of ATP and ADP and it is clearly smaller than the molecular mass of one catalytic subunit (112 kDa). The Tl+-binding experiments reported thus supports the notion that radiation inactivation of Na+/K+-ATPase is a stepwise rather than an all or none process.  相似文献   

14.
(Na+ + K+)-ATPase from beef brain and pig kidney are slowly inactivated by chromium(III) complexes of nucleotide triphosphates in the absence of added univalent and divalent cations. The inactivation of (Na+ + K+)-ATPase activity was accompanied by a parallel decrease of the associated K+-activated p-nitrophenylphosphatase and a parallel loss of the capacity to form, Na+-dependently, a phosphointermediate from [gamma-32P]ATP. The kinetics of inactivation and of phosphorylation with [gamma-32P]CrATP and [alpha-32P]CrATP are consistent with the assumption of the formation of a dissociable complex of CrATP with the enzyme (E) followed by phosphorylation of the enzyme: formula: (see text). The dissociation constant of the CrATP complex of the pig kidney enzyme at 37 degrees C was 43 microM. The inactivation rate constant (k + 2 = 0.033 min-1) was in the range of the dissociation rate constant kd of ADP from the enzyme of 0.011 min-1. The phosphoenzyme was unreactive towards ADP as well as to K+. No hydrolysis of the native isolated phosphoenzyme was observed within 6 h under a variety of conditions, but high concentrations of Na+ reactivated it slowly. The capacity of the Cr-phosphoenzyme of 121 +/- 18 pmol/unit enzyme is identical with the capacity of the unmodified enzyme to form, Na+-dependently, a phosphointermediate. The Cr-phosphoenzyme behaved after acid denaturation like an acylphosphate towards hydroxylamine, but the native phosphoenzyme was not affected by it. ATP protected the enzyme against the inactivation by CrATP (dissociation constant of the enzyme ATP complex = 2.5 microM) as well as low concentrations of K+. CrATP was a competitive inhibitor of (Na+ + K+)-ATPase. It is concluded that CrATP is slowly hydrolyzed at the ATP-binding site of (Na+ + K+)-ATPase and inactivates the enzyme by forming an almost non-reactive phosphoprotein at the site otherwise needed for the Na+-dependent proteinkinase reaction as the phosphate acceptor site.  相似文献   

15.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

16.
We have shown previously that the canine kidney Na+,K+ pump [Na+ + K+)-ATPase) reacts with the ATP affinity analog p-fluorosulfonylbenzoyladenosine (FSBA). At 20 degrees C, we find the time-course of this reaction to be that predicted for a first-order reaction accompanied by competing solvolysis of the reagent. The FSBA-inactivated (Na+ + K+)-ATPase retains the ability to move between the E1 and E2 conformations that predominate in Na+ and K+ medium, respectively. Therefore, FSBA reaction with the enzyme does not interfere significantly with either its alkali metal cation binding or its conformational freedom. The ability of ATP to influence the enzyme's conformation by binding to the high-affinity nucleotide site is decreased, however, in proportion to the degree of inhibition of enzyme activity by FSBA. In addition, the ability of the enzyme to shift from the E1 to the E2 conformation through the (ATP + Na+)-dependent phosphorylation cycle is inhibited by FSBA treatment, as shown by the decreased ability of these substrates to stimulate the K+-dependent p-nitrophenylphosphatase activity. Both of these effects are consistent with specific reaction of FSBA with the ATP binding site of the enzyme. An additional effect of FSBA treatment is that it causes loss of p-nitrophenylphosphatase activity, but to a lesser extent than (Na+ + K+)-ATPase or Na+-ATPase activity. Binding of p-nitrophenylphosphate to the enzyme is apparently unaffected by FSBA treatment, since the Km for p-nitrophenylphosphate is not changed.  相似文献   

17.
Inactivation of Na+/K(+)-ATPase activity by the MgPO4 complex analogue Co(NH3)4PO4 leads, in everted red blood cell vesicles, to the parallel inactivation of 22Na+/K+ flux and 86Rb/Rb+ exchange, but leaves the 22Na+/Na(+)-exchange activity and the uncoupled ATP-supported 22Na+ transport unaffected. Furthermore, inactivation of purified Na+/K(+)-ATPase by Co(NH3)4PO4 leads to a parallel decrease of the capacity of the [3H]ouabain receptor site, when binding was studied by the Mg2+/Pi-supported pathway (ouabain-enzyme complex II) but the capacity of the ouabain receptor site was unaltered, when the Na+/Mg2+/ATP-supported pathway (ouabain-enzyme complex I) was used. No change in the dissociation constants of either ouabain receptor complex was observed following inactivation of Na+/K(+)-ATPase. When eosin was used as a marker for the high-affinity ATP-binding site of the E1 conformation, formation of stable E'2.Co(NH3)4PO4 complex led to a shift in the high-affinity ATP-binding site towards the sodium form. This led to an increase in the dissociation constant of the enzyme complex with K+, from 1.4 mM with the unmodified enzyme to 280 mM with the Co(NH3)4PO4-inactivated enzyme. It was concluded, that the effects of Co(NH3)4PO4 on the partial activities of the sodium pump are difficult to reconcile with an alpha, beta-protomeric enzyme working according the Albers-Post scheme. The data are consistent with an alpha 2, beta 2 diprotomeric enzyme of interacting catalytic subunits working with a modified version of the Albers-Post model.  相似文献   

18.
The Na+,K(+)-ATPase is a membrane-bound, sulfhydryl-containing protein whose activity is critical to maintenance of cell viability. The susceptibility of the enzyme to radical-induced membrane lipid peroxidation was determined following incorporation of a purified Na+,K(+)-ATPase into soybean phosphatidylcholine liposomes. Treatment of liposomes with Fenton's reagent (Fe2+/H2O2) resulted in malondialdehyde formation and total loss of Na+,K(+)-ATPase activity. At 150 microM Fe2+/75 microM H2O2, vitamin E (5 mol%) totally prevented lipid peroxidation but not the loss of enzyme activity. Lipid peroxidation initiated by 25 microM Fe2+/12.5 microM H2O2 led to a loss of Na+,K(+)-ATPase activity, however, vitamin E (1.2 mol%) prevented both malondialdehyde formation and loss of enzyme activity. In the absence of liposomes, there was complete loss of Na+,K(+)-ATPase activity in the presence of 150 microM Fe2+/75 microM H2O2, but little effect by 25 microM Fe2+/12.5 microM H2O2. The activity of the enzyme was also highly sensitive to radicals generated by the reaction of Fe2+ with cumene hydroperoxide, t-butylhydroperoxide, and linoleic acid hydroperoxide. Lipid peroxidation initiated by 150 microM Fe2+/150 microM Fe3+, an oxidant which may be generated by the Fenton's reaction, inactivated the enzyme. In this system, inhibition of malondialdehyde formation by vitamin E prevented loss of Na+,K(+)-ATPase activity. These data demonstrate the susceptibility of the Na+,K(+)-ATPase to radicals produced during lipid peroxidation and indicate that the ability of vitamin E to prevent loss of enzyme activity is highly dependent upon both the nature and the concentration of the initiating and propagating radical species.  相似文献   

19.
1. Monitoring protein conformations of purified (Na+ + K+)-ATPase with intrinsic fluorescence we have examined if altered conformational responses accompany the defective catalytic and transport processes in selectively modified 'invalid' (Na+ + K+)-ATPase which is obtained by graded tryptic digestion of the Na+ form of the protein. 2. The protein fluorescence intensity of the K+ form (E2K) of both control and invalid (Na+ + K+)-ATPase is 2--3% higher than that of the Na+ form (E1Na). By varying the NaCl concentration we found evidence for different fluorescence intensities of the two phosphoenzymes; E2P has the same fluorescence intensity as E2K and the intensity of E1P is similar to that of E1Na. The fraction of phosphoenzyme present as E2P can therefore be determined as the amplitude of the fluorescence change accompanying phosphorylation in the absence of K+ divided by the amplitude of the full response to K+. 3. Titration of the fluorescence responses of the invalid (Na+ + K+)-ATPase shows that the tryptic split alters the noise of the equilibria between the cation-bound conformations, E1Na and E2K, and between the phosphoforms, E1P and E2P, in the direction of the E1 forms. 4. Vanadate binds to the Mg2+-bound form of E2K and prevents further changes in fluorescence intensity of the protein. The conformative responses of invalid (Na+ + K+)-ATPase are insensitive to vanadate in agreement with the reduced vanadate binding affinity of this enzyme. 5. The defective conformative response of the invalid (Na+ + K+)-ATPase in relation to its catalytic defects, reduced Na+ transport, and insensitivity to vanadate suggest that the transitions between Na+ forms (E1) and K+ forms (E2) of the protein are coupled to the catalytic and transport reactions of the (Na+ + K+)-pump.  相似文献   

20.
The aim of the present work was to study the Mg2+-Na+/K+-ATPase interaction that was proposed to lead to the formation of a stable Mg-enzyme complex during phosphorylation from ATP. Instead of Mg we used Mn, which can replace Mg as essential activator of Na+/K+-ATPase activity. The amounts of steady-state Mn bound to the enzyme were estimated at 0 degree C on the basis of the 54Mn remaining in the effluent after passing the reaction mixture through a cation exchange resin column. As a function of the MnCl2 concentration, the amount of Mn retained by the enzyme in the absence and presence of ATP showed a saturable and a linear component; the slope of the linear component was the same in both instances (0.016 nmol/mg per microM). The ATP-dependent Mn binding could be adjusted to a hyperbolic function with a Km of 0.76 microM. The ratio [ATP-dependent E-Mn]/[E-P] measured at 5 microM MnCl2 and 5 microM ATP was not different from 1.0, both in native (Mn-E2-P) as well as in a chymotrypsin treated enzyme (Mn-E1-P). When the Mn.E-P complex was allowed to react with KCl (E2-P form) or ADP (E1-P form), the enzyme was dephosphorylated and simultaneously lost the strongly bound Mn in such a way that the ratio [ATP-dependent E-Mn]/[E-P] remained 1:1. These results show the existence of strongly bound Mn ions to Na+/K+-ATPase during phosphorylation by ATP. That binding is (i) of high affinity for Mn, (ii) probably on a single site, and (iii) with a stoichiometry Mn-Pi of 1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号