首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein synthesis in vivo was studied in whole brain of rat fetuses using continuous intravenous infusion of L-[U-14C]tyrosine into unrestrained pregnant rats at 19 and 21 days gestation. Protein degradation (KD) was calculated by subtracting fractional growth rate of brain protein (KG) from the fractional synthesis rate (KS). KS was high at both gestational ages (0.42 +/- 0.03 days-1 at day 19, 0.47 +/- 0.029 days-1 at 21 days), comparable to values previously reported for newborn rat cerebral hemispheres, and threefold higher than is seen in adult animals. KD was similar at both 19 and 21 days gestation (0.19-0.24) and lower than that reported in neonatal rat brain using similar techniques. Protein accretion during the most rapid phase of brain growth (fetus) is accomplished by similar rates of protein synthesis, but decreased rates of degradation when compared with a slower growth phase (newborn). KD in the brain of the rapidly growing fetus is slightly higher than in adult cerebral hemispheres.  相似文献   

2.
Free and membrane-bound ribosomes were prepared from the brains of young (3- and 8-day-old) and adult (30 day) rats by the method of Ramsey and Steele (1977). Though the concentration of RNA in young brain is higher than that in adult brain, the fraction of the RNA which is ribosomal is virtually the same (64%) as is the ratio of free ribosomes total ribosomes (61%) at all ages studied. The rate of protein synthesis measured in vivo, expressed in the usual terms of “% per h”, is much higher in young compared to adult brain, but when expressed as the ribosomal specific activity, i.e. “mg protein synthesized per hour per mg ribosomal RNA”, is the same in the three age groups (0.61, 0.58 and 0.60, respectively). Thus, even during early development, when protein is increasing rapidly, ribosomes are no more active than in adult brain, suggesting that synthesis rates in brain are limited by ribosomal content.  相似文献   

3.
Brain Slice Protein Degradation and Development   总被引:2,自引:2,他引:0  
Protein degradation rates were measured in brain slices prepared from rats of various ages. This was done by adding the protein synthesis rate, determined by incorporation of a labeled precursor, and the net protein degradation rate, determined by measuring the changes with time of total free amino acids. These rates are about 30% higher than those previously calculated from data on protein synthesis rates and protein accumulation rates in vico. The protein degradation rates in brain slices diminish with age; i.e., 2-day cerebellum > 2-day cerebral hemisphere > 12-day cerebral hemisphere > young adult cerebral hemisphere. Protein degradation rates in slices from young brain are initially slightly higher than protein synthesis rates, resulting in a small net degradation with time. Unlike slices from adult brain, the protein degradation rates in slices from young brain decline only modestly with time for as much as 100 min of incubation. The characteristics of protein degradation in brain slices from young animals are roughly similar to some of the data calculated for protein degradation in vivi. suggesting that this system may prove useful for studying factors which control or affect brain protein degradation.  相似文献   

4.
The growth of the rat lung was studied at six ages, from 18 days of fetal life to old age (i.e. 105 weeks). Most of the increase in lung size appeared to involve cellular hyperplasia rather than hypertrophy, the DNA content of the lung increasing 96-fold from one extreme of life to the other. Pulmonary rates of protein turnover were high and were, age for age, consistently greater than the rates in the whole body. The age-related decline in the rate of lung growth corresponded to a marked decrease in the fractional rate of protein synthesis, i.e. from 93 to 33% per day during fetal and neonatal life. This in turn correlated with a 58% fall in the ribosomal capacity. From weaning onwards, synthesis rates remained between 30 and 40% per day. In contrast, the degradation of lung proteins was unchanged, at 28-38% per day throughout both fetal and post-natal life.  相似文献   

5.
To evaluate the cytotoxic effects of chronic ethanol consumption on brain cerebral synaptosomes and preventive role of betaine as a methyl donor and S-adenosylmethionine precursor, 24 male Wistar rats were divided into three groups: control, ethanol (8 g/kg/day) and ethanol plus betaine(0.5% w/v) group. Animals were fed 60 ml/diet per day for two months, then sacrificed. Malondialdehyde (MDA), protein carbonyl contents and adenosine deaminase (ADA) activities were determined in synaptosomal/mitochondrial enriched fraction isolated from rat cerebral cortexes. When compared to controls, ethanol containing diet significantly increased MDA levels (P < 0.05), also increased protein carbonyl levels and adenosine deaminase activities. But these were not statistically significant (P > 0.05). However, adding betaine to ethanol containing diet caused a significant decrease in MDA, protein carbonyl levels and adenosine deaminase activities (P < 0.05). These results indicate that betaine may appear as a protective nutritional agent against cytotoxic brain damage induced by chronic ethanol consumption.  相似文献   

6.
The effects of chronic ethanol feeding on the small intestine were investigated in young rats. Rats were fed a nutritionally-adequate liquid diet, containing 36 per cent of total energy as ethanol (treated, n = 7), or isovolumetric amounts of the same diet in which ethanol was substituted by isocaloric glucose (controls, n = 7). After six weeks the wet weight and total tissue contents of protein, RNA and DNA were significantly reduced by 21 per cent, 23 per cent, 16 per cent and 28 per cent respectively, (p less than 0.014). Rates of protein synthesis were measured with L[4(3H)]phenylalanine and fractional rates (defined as the percentage of constituent tissue protein synthesised each hour, i.e. ks, % h-1) were calculated from the specific radioactivity of free phenylalanine in both tissue homogenates and plasma. Ethanol-feeding reduced ks by approx 10 per cent (p less than 0.181). The amount of protein synthesized unit-1 RNA was also reduced by approx 15 per cent (p less than 0.059) but the amount of protein synthesis unit-1 DNA was unaffected by ethanol-feeding (p less than 1.000). In contrast, the absolute rates of protein synthesis were reduced by approximately 30 per cent (p less than 0.022). It was concluded that, as the small intestine contributes to approx. 20-25 per cent of whole body synthesis these results may have an important effect on whole body nitrogen homeostasis and may have implications for the gastrointestinal effects of ethanol seen during chronic alcoholic abuse.  相似文献   

7.
To compare cerebral protein metabolism rates in vivo, protein synthesis rates of three organs of five vertebrate species were measured after a single i.p. injection of a flooding dose of [1-14C]valine. In muscle, brain, and liver, the respective average protein synthesis rates, expressed as percent of total protein-bound valine replaced per hour, that is, percent synthesis per hour, in goldfish at 22°C body temperature, were 0.07, 0.23, and 0.57%; in the bullfrog at 20°C, 0.06, 0.18, and 0.55%; in the white Leghorn chicken at 39°C, 0.24, 0.70, and 2.17%; and in the mouse at 38°C, 0.22, 0.65, and 2.0%. In the Tokay lizard at different body temperatures, the synthesis rates were 0.04, 0.13, and 0.43% at 26°C; 0.05, 0.20, and 0.63% at 32°C; and 0.07, 0.27, and 0.81% at 38°C. The results demonstrate differences in protein synthesis rates in organs of the various species examined. The differences among the species seem to be due, to a major extent, to differences in body temperature; rates in lizard are below those in other species at temperatures tried. Protein synthesis rates in brain in all species are almost three times lower than those in liver and almost three times higher than those in muscle.  相似文献   

8.
Rates of protein synthesis in skeletal, cardiac and smooth muscle of fully grown fowl (Gallus domesticus) were determined in vivo by means of the constant infusion method using [14C]proline. In the anterior latissimus dorsi muscle, containing predominantly slow fibres, the average synthesis rate of non-collagen muscle proteins was 17.0 +/- 3.1% per day, a value higher than that obtained for cardiac muscle (13.8 +/- 1.3% per day) and for smooth muscle of the gizzard (12.0 +/- 1.9% per day). In the posterior latissimus dorsi muscle, containing predominantly fast fibres, synthesis rates were much lower (6.9 +/- 1.8% per day). In each case these average rates for the non-collagen protein were similar to the average rate for the sarcoplasmic and myofibrillar protein fractions. The RNA concentration of these four muscles showed that relative rates of protein synthesis were determined mainly by the relative RNA concentrations. The rate of protein synthesis per unit of DNA (the DNA activity) was similar in the two skeletal muscles, but somewhat lower in cardiac muscle and gizzard, possibly reflecting the larger proportion of less active cell types in these two muscles. These quantitative aspects of protein turnover in the two skeletal muscles are discussed in terms of the determination of ultimate size of the DNA unit, and in relation to muscle ultrastructure.  相似文献   

9.
Changes in the growth and protein turnover (measured in vivo) of the rat liver, kidney and whole body were studied between 16 days of life in utero and 105 weeks post partum. Tissue and whole-body growth were related to changes in both cellular hyperplasia (i.e. changes in DNA) and hypertrophy (protein/DNA values) and to the protein composition within the enlarging tissue mass. The suitability of using a single large dose of phenylalanine for measuring the rates of protein synthesis during both pre- and post-natal life was established. The declining growth rates in the whole animal and the two visceral tissues were then explained by developmental changes in the fractional rates of protein synthesis and breakdown, turnover rates being age-for-age higher in the liver than in the kidney, which in turn were higher than those measured in the whole animal. The declining fractional rates of synthesis in both tissues and the whole body with increasing age were related to changes in the tissues' ribosomal capacity and activity. The fall in the hepatic rate between 18 and 20 days of foetal life (from 134 to 98% per day) corresponded to a decrease in both the ribosomal capacity and the rate of synthesis per ribosome. No significant changes in any of these parameters were, however, found in the liver between weaning (3 weeks) and senility (105 weeks). In contrast, the fractional synthetic (and degradative) rates progressively declined in the kidney (from 95 to 24% per day) and whole body (from 70 to 11% per day) throughout both pre- and post-natal life, mainly as a consequence of a progressive decline in the ribosomal capacity, but with some fall in the ribosomal activity also during foetal life. The age-related contributions of these visceral tissues to the total amount of protein synthesized per day by the whole animal were determined. The renal contribution remained fairly constant at 1.6-2.9%, whereas the hepatic contribution declined from 56 to 11%, with increasing age. Approximate-steady-state conditions were reached at, and between, 44 and 105 weeks post partum, the half-life values of mixed whole-body, kidney and liver proteins being 6.4, 3.0 and 1.5 days, respectively, at 105 weeks.  相似文献   

10.
A study of the anaerobic digestion of wastewater derived from the production of protein isolates from chickpea flour was carried out in a laboratory-scale, mesophilic (35 °C) fluidised-bed reactor with saponite as bacterial support. Soluble chemical oxygen demand (SCOD) removal efficiencies in the range of 96.8–85.2% were achieved in the reactor at organic loading rates (OLR) of between 0.58 and 2.10 g chemical oxygen demand (COD)/l per day, hydraulic retention times (HRT) of between 14.9 and 4.5 days and average feed COD concentration of 9.1 g/l. Eighty-five percent of feed COD could be removed up to OLR of 2.1 g COD/l per day. The yield coefficient of methane production was 0.34 l of methane (at STP) per gram COD removed and was virtually independent of the OLR applied. Because the buffering capacity of the experimental system was maintained at favourable levels with excess total alkalinity present at all loadings, the rate of methanogenesis was not affected by loading. Experimental data indicated that a total alkalinity in the range of 1090–2130 mg/l as CaCO3 was sufficient to prevent the pH from decreasing to below 7.2 for OLR of up to 2.7 g COD/l per day. The volatile fatty acid (VFA) levels and the VFA/alkalinity ratio were lower than the suggested limits for digester failure (0.3–0.4) for OLR and HRT up to 2.7 g COD/l per day and 3.5 days, respectively. For a HRT of 2.8 days (OLR of 3.00 g COD/l per day) the start of acidification was observed in the reactor.  相似文献   

11.
The effects of graded doses of insulin and corticosterone on myofibrillar protein turnover were investigated in growing diabetic rats in order to assess their counteractive roles in the control of protein accretion. N tau-Methylhistidine excretion and carcass protein accretion were measured over 6 days in streptozotocin-diabetic rats receiving either a constant catabolic dose of corticosterone accompanied by graded doses of insulin or a constant dose of insulin accompanied by graded doses of corticosterone. The high corticosterone dose decreased the rate of protein accretion by both increasing the rate of degradation and decreasing the rate of synthesis. Increasing insulin dosage counteracted these effects, but could not restore positive accretion rates. Direct measurement of protein-synthesis rates gave results comparable with those obtained from use of N tau-methylhistidine excretion. At constant insulin dosage, increased corticosterone to 45 mg/kg body wt. per day caused a dose-related linear decrease in protein accretion rates from +4.5 to -3.2% per day. Growth ceased at 28 mg of corticosterone/kg body wt. per day, largely owing to a fall in synthesis rates (-3.5%/day) rather than the increase in degradation rates (+1.0%/day). However, at steroid doses greater than 30 mg/kg body wt. per day the degradation rate increased markedly and accounted for most of the additional fall in accretion. These results show that insulin antagonizes the action of glucocorticoids on both the synthesis and degradative pathways of myofibrillar protein turnover. The changes in fractional degradation rates appear relatively more attenuated by insulin than are those of synthesis.  相似文献   

12.
The influence of starvation on protein synthesis in the adult rat brain was studied in vivo by an intravenous injection of a flooding dose of unlabeled valine including a tracer dose ofL-[3,4(n)-3H]valine. Brief starvation (24 hours) induced a 20% decline in fractional and absolute rates of brain protein synthesis. This decline resulted from a 20% decrease in the efficiency of protein synthesis (g protein synthesized per day per g RNA) whereas the capacity for protein synthesis (g RNA per mg protein) was maintained. Prolonged starvation (5 days) was marked by no further significant changes in the fractional rate, absolute rate and efficiency of protein synthesis, whereas the capacity for protein synthesis cecreased slightly. The relative contribution of brain to wholebody body protein synthesis increased during fasting, and neither the protein nor the RNA brain content did change during the experiment. These results clearly indicate that brain proteins are spared in response to brief and prolonged food deprivation, and that brain protein synthesis is very sensitive to short-term fasting.  相似文献   

13.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

14.
In studies of whole body protein turnover, recycling of tracer from the breakdown of labelled protein is usually neglected; this neglect may introduce a significant error. A three-pool model with fast and slowly turning over protein pools has been used to calculate recycling rates over a range of sizes and turnover rates of the protein pools. Complete and approximate solutions of the equations are given. The recycling rate of 1% per hour would fit the available data on the turnover rates of human tissue proteins.  相似文献   

15.
A METHOD FOR MEASURING BRAIN PROTEIN SYNTHESIS RATES IN YOUNG AND ADULT RATS   总被引:19,自引:14,他引:5  
The injection of large quantities of radioactive amino acid precursor is proposed as a technique for determining rates of cerebral protein synthesis in vivo. In this way the specific radioactivity of the amino acid precursor in the brain is maintained at a relatively constant level for at least 2 h. Injections of 10–15 μ mol of valine per g body weight result in nearly constant rates of incorporation of radioactivity and do not appear to inhibit cerebral protein synthesis in adult or young (2–6 day old) rat brain. Similar rates were obtained in young rat brain with lysine and histidine. Rates of protein synthesis in cerebral hemisphere were for 2-day-olds 2·1 per cent replacement of protein bound amino acid per h and for adult 0·62 per cent per h. Advantages and disadvantages of the procedure are discussed.  相似文献   

16.
Jones W. O. and Symons L. E. A. 1982. Protein synthesis in the whole body, liver, skeletal muscle and kidney cortex of lambs infected by the nematode Trichostrongylus colubriformis. International Journal for Parasitology12: 295–301. Tyrosine flux and the synthesis of protein in the whole body, liver, skeletal muscle and kidney cortex and of albumin in lambs infected with Trichostrongylus colubriformis and uninfected lambs fed ad libitum or pair-fed with the infected group, were measured by constant infusion of 14C-l-tyrosine. Live weight gain was lower in the infected than in pairfed lambs, but rates of whole body protein synthesis were similar in both groups. On the other hand, compared with control lambs, there was a faster rate of protein synthesis per unit of protein consumed in infected but not in pair-fed lambs. Rates of protein synthesis per unit of body weight in infected were higher than in pair-fed lambs, but similar to the rate in control lambs. The fractional synthetic rates (FSR) of albumin and liver proteins and the amount of liver protein synthesized per day were increased by infection. The FSR and amount of protein synthesized per day were depressed in skeletal muscle and kidney cortex. Anorexia did not explain any of these changes. Infection caused a loss of protein from each of these tissues, but this loss was due to anorexia in only the liver. There was generally good correlation between concentration of RNA per g fresh weight or per mg nitrogen and the FSR of protein. However, although the RNADNA ratio correlated well with synthesis in skeletal muscle, it was poorly correlated for liver proteins. The relationship between the rate of growth and protein synthesis in infected lambs is discussed.  相似文献   

17.
To examine the potential use of synthesis gas as a carbon and energy source in fermentation processes, Rhodospirillum rubrum was cultured on synthesis gas generated from discarded seed corn. The growth rates, growth and poly-beta-hydroxyalkanoates (PHA) yields, and CO oxidation/H(2) evolution rates were evaluated in comparison to the rates observed with an artificial synthesis gas mixture. Depending on the gas conditioning system used, synthesis gas either stimulated or inhibited CO-oxidation rates compared to the observations with the artificial synthesis gas mixture. Inhibitory and stimulatory compounds in synthesis gas could be removed by the addition of activated charcoal, char-tar, or char-ash filters (char, tar, and ash are gasification residues). In batch fermentations, approximately 1.4 mol CO was oxidized per day per g cell protein with the production of 0.75 mol H(2) and 340 mg PHA per day per g cell protein. The PHA produced from R. rubrum grown on synthesis gas was composed of 86% beta-hydroxybutyrate and 14% beta-hydroxyvalerate. Mass transfer of CO into the liquid phase was determined as the rate-limiting step in the fermentation.  相似文献   

18.
We delineated the ontogeny of the brain insulin binding, insulin receptor number and affinity using plasma membranes isolated from the rabbit. Specific 125I-insulin binding and receptor number expressed per milligram of protein increased from the 20 day gestation fetus to the 1-day-old newborn, declining thereafter to attain adult values by day 6 of postnatal life. Specific 125I-insulin binding and the receptor number in the adult brain was less than the fetal and neonatal (1 day) brain receptors. Although a similar trend was observed specifically during fetal development, the changes in receptor number expressed per microgram DNA were not significant in the neonatal period. The adult brain insulin receptor number was higher than the 20- to 27-day fetus and similar to that of the 30-day fetus and the 1- to 5-day newborns. The total receptor number correlated linearly with the brain plasma membrane protein increment velocity. The affinity of the receptors increased during early fetal development (20-27 days) and remained constant thereafter in the postnatal period. We conclude that the ontogenic changes of the brain insulin receptors are similar to the ontogenic changes of brain plasma membrane protein. The developmental changes are more pronounced when the receptor number is expressed per milligram protein versus microgram DNA.  相似文献   

19.
Six groups of 5 male rats (starting body weight 109 g) were allowed free access to a conventional rat diet. At 4 hourly intervals, starting at 10.00 h muscle protein synthesis was measured. By relating the weights of the gastrocnemius and soleus muscles to the initial body weights of the animals (i.e., at 09.30, day 1), a linear increase in muscle weight throughout the day was demonstrated. The fractional rate of muscle protein synthesis varied from 16.8% per day to 20.3% per day in gastrocnemius muscle and from 17.9% per day and 22.1% per day in the soleus. It was calculated that the maximum error incurred in estimating daily muscle protein synthesis by extrapolation of the value at any one time was 6% in gastrocnemius and 9% in soleus. It is concluded that calculations of the average rate of muscle protein degradation based on the difference between the rates of synthesis and deposition are generally valid in rats allowed free access to an adequate diet.  相似文献   

20.
Abstract: In developing chicken brain Ca2+/calmodulin-stimulated protein kinase II (CaMPK-II) changes from being primarily cytosolic to being primarily particulate during the protracted maturation period. To investigate whether thyroid hormone levels may be involved in regulating this subcellular redistribution, we raised chickens from 1 day posthatching on food soaked in 0.15% (wt/vol) propylthiouracil (PTU) plus 0.05% (wt/vol) methimazole (MMI). This produced a mild hypothyroidism specifically during the maturation period and resulted in a 67% reduction in the levels of free triiodothyronine (T3) at 42 days. The concentrations of α- and β-CaMPK-II in cytosol (S3) and crude synaptic membrane (P2M) fractions from forebrain were measured by three methods: Ca2+/calmodulin- or Zn2+-stimulated autophosphorylation or binding of biotinylated calmodulin. By all three methods hypothyroid animals showed a marked retardation of the redistribution of both subunits of CaMPK-II: an increase in the concentration of the enzyme in S3 and a corresponding decrease in P2M with no overall change in the total amount of enzyme and little apparent change in the concentration of other proteins. In both fractions, there was a parallel change in the Ca2+/calmodulin-stimulated phosphorylation of endogenous protein substrates but no change in the basal or cyclic AMP-stimulated protein phosphorylation. Supplementing the PTU/MMI-treated diet with thyroxine (0.5 ppm) prevented all of the observed changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号