首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The activation of NF-kappaB has been shown to be regulated by multiple phosphorylations of IkappaBs and the NF-kappaB p65 subunit. Here, we characterized the intracellular signaling pathway leading to phosphorylation of p65 on Ser-536 using a novel anti-phospho-p65 (Ser-536) antibody. The Ser-536 of endogenous p65 was rapidly phosphorylated in response to a wide variety of NF-kappaB stimulants including TNF-alpha in the cytoplasm and rapidly dephosphorylated in the nucleus. The TNF-alpha-but not IL-1beta-induced Ser-536 phosphorylation was severely impaired in murine embryonic fibroblasts derived from traf2-/-traf5-/- mice. Bay 11-7082, an inhibitor of IkappaB phosphorylation, inhibited the TNF-alpha-induced phosphorylation in vivo. In addition, overexpression of TGF-beta-activated kinase 1 (TAK1), IKKalpha and IKKbeta stimulated the phosphorylation, and their dominant negative mutants blocked the TNF-alpha-induced phosphorylation. Moreover, small interfering RNAs (siRNAs) against TAK1, IKKalpha and IKKbeta blocked the phosphorylation of endogenous p65. On the other hand, calyculin-A, a protein phosphatase inhibitor, blocked the dephosphorylation in the nucleus in vivo. These results indicate that similar signaling pathways were utilized for the phosphorylations of IkappaBalpha and p65, which further support the idea that both IkappaB and NF-kappaB are substrates for the IKK complex in the activation of NF-kappaB.  相似文献   

7.
8.
The activation of NF-kappaB by neutrophil lactoferrin (Lf) is regulated via the IkappaB kinase (IKK) signaling cascade, resulting in the sequential phosphorylation and degradation of IkappaB. In this study, we observed that Lf protein augmented p65 phosphorylation at the Ser(536), but not the Ser(276) residue, and stimulated the translocation of p65 into the nucleus. Lf was also shown to enhance the association between p65 and CREB-binding protein/p300 in vivo. To elucidate the mechanism by which Lf triggers these signaling pathways, we attempted to delineate the roles of the upstream components of the IKK complex, using their dominant-negative mutants and IKKalpha(-/-) and IKKbeta(-/-) mouse embryonic cells. We demonstrated that both IKKalpha and IKKbeta as well as NF-kappaB-inducing kinase are indispensable for Lf-induced p65 phosphorylation. However, MAPK kinase kinase 1 is not essentially required for this activation. We also observed that Lf-induced p65 phosphorylation was either partially or completely abrogated as the result of treatment with the mutant forms of TNFR-associated factor (TRAF) 2, TRAF5, or TRAF6. Moreover, we demonstrated that Lf directly interacted with TRAF5. Expression of the dominant-negative mutant of TRAF5 or its small interfering RNA almost completely abrogated the Lf-induced p65 phosphorylation. These results suggest that signaling pathways, including TRAFs/NF-kappaB-inducing kinase/IKKs, may be involved in the regulation of Lf-induced p65 activation, thereby resulting in the activation of members of the NF-kappaB family.  相似文献   

9.
10.
11.
12.
Tumor necrosis factor alpha (TNFalpha)-stimulated nuclear factor (NF) kappaB activation plays a key role in the pathogenesis of inflammatory bowel disease (IBD). Phosphorylation of NFkappaB inhibitory protein (IkappaB) leading to its degradation and NFkappaB activation, is regulated by the multimeric IkappaB kinase complex, including IKKalpha and IKKbeta. We recently reported that 5-aminosalicylic acid (5-ASA) inhibits TNFalpha-regulated IkappaB degradation and NFkappaB activation. To determine the mechanism of 5-ASA inhibition of IkappaB degradation, we studied young adult mouse colon (YAMC) cells by immunodetection and in vitro kinase assays. We show 5-ASA inhibits TNFalpha-stimulated phosphorylation of IkappaBalpha in intact YAMC cells. Phosphorylation of a glutathione S-transferase-IkappaBalpha fusion protein by cellular extracts or immunoprecipitated IKKalpha isolated from cells treated with TNFalpha is inhibited by 5-ASA. Recombinant IKKalpha and IKKbeta autophosphorylation and their phosphorylation of glutathione S-transferase-IkappaBalpha are inhibited by 5-ASA. However, IKKalpha serine phosphorylation by its upstream kinase in either intact cells or cellular extracts is not blocked by 5-ASA. Surprisingly, immunodepletion of cellular extracts suggests IKKalpha is predominantly responsible for IkappaBalpha phosphorylation in intestinal epithelial cells. In summary, 5-ASA inhibits TNFalpha-stimulated IKKalpha kinase activity toward IkappaBalpha in intestinal epithelial cells. These findings suggest a novel role for 5-ASA in the management of IBD by disrupting TNFalpha activation of NFkappaB.  相似文献   

13.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

14.
Kamata H  Manabe T  Oka Si  Kamata K  Hirata H 《FEBS letters》2002,519(1-3):231-237
The cellular redox state regulates nuclear factor-kappaB (NF-kappaB) signaling systems. We investigated the effects of H2O2 on inhibitor of NF-kappaB (IkappaB) kinases (IKKalpha and IKKbeta), which phosphorylate IkappaB leading to its degradation and NF-kappaB activation. Tumor necrosis factor (TNF) stimulation increased IKK activity within 10 min, and then IKK activity decreased gradually within 30 min in HeLa cells. Stimulation of the cells with H2O2 induced a slight activation of IKK within 30 min. Furthermore, co-stimulation with TNF suppressed the downregulation of IKK and sustained the activation for more than 30 min. H2O2 also markedly activated IKK in cells that were pretreated with TNF or phorbol myristate acetate. Electrophoretic mobility shift assay revealed that H2O2 enhanced TNF-induced NF-kappaB activation. Studies using IKK mutants and an antibody against phosphorylated IKK proteins revealed that phosphorylation of serine residues, Ser180 of IKKalpha and Ser181 of IKKbeta, in the activation loops was essential for the H2O2-mediated activation of IKK. H2O2-induced activation of IKKalpha and IKKbeta was reduced by IKKbeta and IKKalpha kinase-negative mutants, respectively, indicating that IKKalpha and IKKbeta were stimulated by H2O2 in an interdependent manner. These results suggest that oxidative radical stress has stimulatory effects on NF-kappaB through the activation of IKK, which is mediated by the phosphorylation of serine residues in the activation loops.  相似文献   

15.
Recent investigations have elucidated the cytokine-induced NF-kappaB activation pathway. IkappaB kinase (IKK) phosphorylates inhibitors of NF-kappaB (IkappaBs). The phosphorylation targets them for rapid degradation through a ubiquitin-proteasome pathway, allowing the nuclear translocation of NF-kappaB. We have examined the possibility that IKK can phosphorylate the p65 NF-kappaB subunit as well as IkappaB in the cytokine-induced NF-kappaB activation. In the cytoplasm of HeLa cells, the p65 subunit was rapidly phosphorylated in response to TNF-alpha in a time dependent manner similar to IkappaB phosphorylation. In vitro phosphorylation with GST-fused p65 showed that a p65 phosphorylating activity was present in the cytoplasmic fraction and the target residue was Ser-536 in the carboxyl-terminal transactivation domain. The endogenous IKK complex, overexpressed IKKs, and recombinant IKKbeta efficiently phosphorylated the same Ser residue of p65 in vitro. The major phosphorylation site in vivo was also Ser-536. Furthermore, activation of IKKs by NF-kappaB-inducing kinase induced phosphorylation of p65 in vivo. Our finding, together with previous observations, suggests dual roles for IKK complex in the regulation of NF-kappaB.IkappaB complex.  相似文献   

16.
17.
18.
19.
20.
Fibronectin (Fn) is involved in early stages of bone formation and basic fibroblast growth factor (bFGF) is an important factor regulating osteogenesis. bFGF increased Fn expression, which was attenuated by phosphatidylinositol phospholipase inhibitor (U73122), protein kinase C inhibitor (GF109203X), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), IkappaBalpha phosphorylation inhibitor (Bay 117082), or IkappaB protease inhibitor (TPCK). bFGF-induced increase of Fn-luciferase activity was antagonized by cells transfected with Fn construct without NF-kappaB regulatory site. Stimulation of osteoblasts with bFGF activated IkappaB kinase alpha/beta (IKK alpha/beta) and increased IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex and kappaB-luciferase activity. bFGF-mediated an increase of IKKalpha/beta activity and DNA-binding activity was inhibited by U73122, GF109203X, or PP2. The binding of p65 to the NF-kappaB element, as well as the recruitment of p300 and the enhancement of p50 acetylation on the Fn promoter was enhanced by bFGF. Overexpression of constitutively active FGF receptor 2 (FGFR2) increased Fn-luciferase activity, which was inhibited by co-transfection with dominant negative (DN) mutants of PLCgamma2, PKCalpha, c-Src, IKKalpha, or IKKbeta. Our results suggest that bFGF increased Fn expression in rat osteoblasts via the FGFR2/PLCgamma2/PKCalpha/c-Src/NF-kappaB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号