首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative morphology of the butterfly proboscis and its sensilla — a contribution to the phylogenetic systematics of Papilionoidea (Insecta, Lepidoptera) The morphology of the proboscis was investigated in more than 70 European representatives of Papilionoidea using light microscopy and scanning electron microscopy. The composition of the proboscis wall, its surface structures, as well as the shape and distribution of the different types of sensilla are compared. Special attention is given to the tip region and the diversity of the sensilla styloconica. Plesiomorphic features of the proboscis of Papilionoidea were found to include vertically extended exocuticular ribs composing the galeal wall, cuticular spines restricted to the ventral side of the proximal galea, and two rows of fluted sensilla styloconica restricted to the tip region. Apomorphic features of the proboscis in Papilionidae are three rows of small sensilla styloconica. The presence of cuticular spines all over the galeae was identified as an autapomorphy of Pieridae. Possible apomorphies of Nymphalidae are oblique exocuticular ribs of the galeal wall and the great number and length of the sensilla styloconica (significant at p < 0.01, t-test). A possible synapomorphy of Lycaenidae and Riodinidae are cuticlar spines up to the distal galeae. Distinct transformation series of sensilla styloconica give evidence that divergent evolutionary trends led from fluted shafts to a multitude of other shapes in Papilionidae, Nymphalidae (sensu lato), and Lycaenidae. Long smooth-shafted, club-shaped sensilla styloconica, bearing apical spines, are found in Nymphalinae, Apaturinae and Limenitidinae. Highly derived sensilla styloconica evolved in Heliconiinae and Melitaeini, which are arranged in only one row in both taxa. Their shafts are smooth, flattened and bear an excentral sensory cone. Further apomorphic character states are dented flutes which evolved several times, independently from each other in Satyrinae, Lycaeninae and Riodinidae. The results are discussed in a systematical context and provide the basis for a better understanding of the function of different morphological structures of the proboscis in feeding.  相似文献   

2.
Krenn, H. W. 2000. Proboscis musculature in the butterfly Vanessa cardui (Nymphalidae, Lepidoptera): settling the proboscis recoiling controversy. —Acta Zoologica (Stockholm) 81 : 259–266 The proboscis of Vanessa cardui (Nymphalidae) contains two basal galeal muscles and two different series of numerous oblique muscles. Both muscle series extend from the proximal region up to the tip‐region; the individual muscles of each series run a constant course throughout the proboscis. In contrast to other butterflies, the knee bend region does not have additional types of muscles. The analysis of shock‐frozen proboscises reveals that the dorsal wall is arched outwardly in the uncoiled, feeding position whereas in the coiled, resting position the dorsal proboscis wall is flat or concave. This results in a significantly greater cross‐sectional area due to the significantly greater dorso‐ventral diameter in uncoiled proboscises. After freezing the proboscis in its distal region, it can still be uncoiled, however, it cannot be fully recoiled. These morphometric and experimental results indicate that the oblique proboscis muscles are responsible for recoiling the proboscis to the resting position.  相似文献   

3.
The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).  相似文献   

4.
Summary The mouthparts of Lepidoptera were investigated in a number of species by morphological and cinematographical methods. Both the galeae (which compose the proboscis) and the basal maxillary components (stipites) were studied in the resting position, in motion, and during feeding. In the resting position the proboscis is coiled so tightly that the surfaces of the consecutive coils are in close contact and the outermost coil touches the ventral side of the head. Cuticular processes of the galeal wall interlock between the coils in this position. In the investigated species they occur on the galeal wall and on the ventral side of the head in varying number and distribution. By the extension of the basal galeal joint, the coiled proboscis is released from its resting position and is elevated continuously. It uncoils in 3–5 steps which effect the entire length simultaneously. Each uncoiling step occurs synchronously with a compression of the stipital tubes on either side of the body. These compression movements pump hemolymph into the galeae. In all investigated Lepidoptera the uncoiled proboscis shows a distinct downward bend at a certain point which is also detectable in anaesthetized or freshly killed animals in some species. This feeding position and the movements of the uncoiled proboscis are similar in all species despite the intrinsic galeal muscles being variously arranged in the galeal lumen in different Lepidoptera. When comparing cross-sections through corresponding regions of coiled and uncoiled proboscises, the curvatures of the dorsal galeal walls remain unchanged. Coiling of the proboscis starts at the tip and progresses to the base. After coiling the proboscis tightly beneath the head, the diameter of the spiral widens due to its elastic properties until the proboscis props itself against the ventral side of the head. This elastic effect combined with the interlocking cuticular processes seems to be responsible for the resting position of the proboscis.Abbreviations an antenna - bre bend region - ca cardo - ci cibarium - cl clypeus - co complex eye - cp cuticular process - dre distal region - esm external tentoriostipital muscle - fc food canal - fst flat part of the stipes - ga galea - hs horizontal septum - igm intrinsic galeal muscles - ism internal tentoriostipital muscle - la labium - lap labial palpus - lr labrum - mxp maxillary palpus - ne nerve - pi pilifer - pom primary oblique galeal muscles - pr proboscis - pre proximal region - sa salivarium - se sensillum - som secondary oblique galeal muscles - st stipes - stl stipital lamella - te tentorium - tr trachea - tst tubular part of the stipes - vm ventral membrane - vs vertical septum  相似文献   

5.
The external structures of the proboscis are investigated in eye-frequenting species of Noctuidae, Geometridae and Pyralidae by means of scanning electron microscopy. They are compared with non-eye-frequenting representatives of these families. In Noctuidae, highly specialized fruit-piercing, skin-piercing blood-sucking, and sweat-feeding representatives have been included. All hemi- and eulachryphagous species have a soft proboscis tip which is characterized by few sensilla and strongly elongated, dentate plates of the dorsal galeal linkage. The latter structures leave broad gaps between them that lead into the food canal at the tip. This arrangement permits the uptake of fluid suspensions such as lachrymal fluid, wound exudates and pus. The modified dorsal galeal linkage is regarded as an adaptation for this highly derived feeding habit. The rough surface of the proboscis is likely to cause irritation and possible mechanical damage to the conjunctiva and cornea which results in an increased lachrymal flow and production of pus. In contrast to fruit-piercing and skin-piercing Noctuidae, there are no erectile structures on the proboscis of eye-frequenting species.—The comparison with related non-eye-frequenting species demonstrates that the particular morphology of the proboscis tip in lachryphagous moths evolved convergently in different families of Leipdoptera.  相似文献   

6.
1. Available evidence on butterfly family-level relationships is re-examined according to the principles of phylogenetic (cladistic) systematics. 2. The assumption of a sister-group relationship between the Hesperioidea and Papilionoidea seems a reasonably substantiated working hypothesis. 3. The Papilionoid families Papilionidae, Pieridae and Lycaenidae sensu Ehrlich (1958) are definable as monophyletic entities; of Ehrlich 's two remaining families, Nymphalidae and Libytheidae, the former is paraphyletic in terms of the latter. 4. The interrelationships between the Papilionoid families may be presented as Papilionidae + (Pieridae + [Lycanidae + Nymphalidae]). 5. In a phylogenetic system any given arrangement of taxa is either correct or not: Contrary to the pheneticists' view (Ehrlich and Ehrlich 1967) phylogenetic systematists cannot accept the existence of a multitude of valid classifications.  相似文献   

7.
The role of the maxillary muscles in the uncoiling and coiling movements of hawkmoths (Sphingidae) has been examined by electromyogram recordings, combined with video analysis. The maxillary muscles of adult Lepidoptera can be divided into two groups, galeal and stipital muscles. The galea contains two basal muscles and two series of oblique longitudinal muscles, which run through the entire length of the galea. Three muscles insert on the stipes, taking their origin on the tentorium and on parts of the cranium and gena, respectively. Proboscis extension is initiated by an elevation of the galea base caused by the basal galeal muscles. The actual uncoiling of the proboscis spiral is accompanied by rapid compressions of the stipites which are caused by two of the stipital muscles. The study provides strong support for the hypothesis that uncoiling is brought about by an increase of hemolymph pressure by the stipites forcing hemolymph into the galeae. Recoiling is caused by the contraction of both sets of oblique longitudinal galeal muscles supported by elasticity of the galea cuticle. Finally, the remaining stipital muscle pulls down the galea base which brings the coiled proboscis back to its resting position where it is held in the U-shaped groove of the labium without further muscle activity.  相似文献   

8.
The form and function of the hesperiid feeding apparatus was studied in detail. The butterflies in the family Hesperiidae are of particular interest because the longest proboscis ever recorded in Papilionoidea was found in the Neotropical genus Damas. We focused on the functional morphology by comparing proboscis morphology as well as size and composition of both the stipes pump and the cibarial suction pump in skippers with short and extremely long proboscis. Results revealed that all studied Hesperiidae have the same proboscis micromorphology and sensilla endowment regardless of the proboscis length. However, the numbers of internal muscles of the proboscis, the morphology of the stipes pump as well as the pumping organs for nectar uptake are related to the proboscis length. We conclude that the low number of tip sensilla compared to proboscis length is responsible for remarkably longer manipulation times of long‐proboscid species during flower visits. The organs for proboscis movements and nectar uptake organs are well tuned to the respective proboscis length and are accordingly bigger in species with a proboscis that measures twice the body length.  相似文献   

9.
Based on serial semithin sections and SEM photographs of representatives of European Bombyliinae and Anthracinae, the mouthparts of Bombyliidae are studied and compared with the relevant data from literature on other families of Diptera Brachycera. The three moving units of the proboscis (clypeo-cibarial region, haustellum-maxillary base region, and labella) and their structures and muscles are described. Functions and possible movements are inferred from the structures observed. Articulations both between the parts of the organ and to the head capsule enable the fly to retract its proboscis into a resting position. Proboscis movement from a resting to a feeding position encompasses the following submovements: rotating of the basal clypeo-cibarial region (= fulcrum) against the head capsule, folding of the haustellum-maxillary base region against the fulcrum, evagination and invagination of the labial base, and the labella movements. This is a novelty as compared to the rigid proboscis of Tabanidae and agrees largely with the conditions in the Cyclorrhapha. The evolution of these novelties and their functional significance are discussed. The fulcrum, as well as the haustellum-maxillary base, as the new moving units are deduced from the plesiomorphic state as present in Tabanidae by fusions of sclerites, shifts of musculature and formation of new articulations. Accepted: 5 April 2000  相似文献   

10.
An assessment of the anatomical costs of extremely long proboscid mouthparts can contribute to the understanding of the evolution of form and function in the context of insect feeding behaviour. An integrative analysis of expenses relating to an exceptionally long proboscis in butterflies includes all organs involved in fluid feeding, such as the proboscis plus its musculature, sensilla, and food canal, as well as organs for proboscis movements and the suction pump for fluid uptake. In the present study, we report a morphometric comparison of derived long‐tongued (proboscis approximately twice as long as the body) and short‐tongued Riodinidae (proboscis half as long as the body), which reveals the non‐linear scaling relationships of an extremely long proboscis. We found no elongation of the tip region, low numbers of proboscis sensilla, short sensilla styloconica, and no increase of galeal musculature in relation to galeal volume, but a larger food canal, as well as larger head musculature in relation to the head capsule. The results indicate the relatively low extra expense on the proboscis musculature and sensilla equipment but significant anatomical costs, such as reinforced haemolymph and suction pump musculature, as well as thick cuticular proboscis walls, which are functionally related to feeding performance in species possessing an extremely long proboscis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 291–304.  相似文献   

11.
Proboscis length, the length of the tip, the number and length of the various sensilla throughout the proboscis, and the size and shape of the labial palpi were compared in 25 species of pollen-feeding and non-pollen-feeding Heliconiinae (Lepidoptera, Nymphalidae). The mouthparts of pollen-feeding species (all belonging to the genera Heliconius and Laparus) do not have structures exclusive to them. However, in comparison with non-pollen-feeding Heliconiiti, the pollen-feeding species have a significantly longer proboscis without elongation of the tip-region ; the bristle-shaped sensilla trichodea were found to be significantly more numerous and longer on the proximal and mid-region of the proboscis, while the sensilla of the tip-region are significantly shorter. In addition to these proboscis features, the labial palpi were shorter in the pollen-feeding species, which is likewise possibly associated with pollen-feeding behavior. The biological role of these features is discussed and the evolution of this unique feeding behavior among Lepidoptera is considered in the context of the phylogenetic relationships among genera of Heliconiini.  相似文献   

12.
亚洲蝮亚科蛇属间系统发生支序分析 (蛇亚目:蝰科)   总被引:1,自引:0,他引:1  
郭鹏  张服基 《生命科学研究》2000,4(3):262-266,280
在大量比较形态研究的基础上,选择了5个特征方面28个性状,以支序分析方法探讨了分布于亚洲蝮亚科蛇5属14种的系统发生关系,结果表明:该亚科蛇类可以划分为3个不同的类群,第一个类群包括尖吻蝮属、瘤鼻蝮属、红口腹属,它们具有较多的祖征,代表了该科中原始一类,基中红口蝮可能是最原始的一属;亚洲蝮属单独形成一个类群;第三个类群为原广义的烙铁头蛇属,包括竹叶青蛇属、原矛蝮属、烙铁头蛇属、黑绿烙铁头蛇属、莽山  相似文献   

13.
Phylogenetic relationships among major clades of butterflies and skippers have long been controversial, with no general consensus even today. Such lack of resolution is a substantial impediment to using the otherwise well studied butterflies as a model group in biology. Here we report the results of a combined analysis of DNA sequences from three genes and a morphological data matrix for 57 taxa (3258 characters, 1290 parsimony informative) representing all major lineages from the three putative butterfly super-families (Hedyloidea, Hesperioidea and Papilionoidea), plus out-groups representing other ditrysian Lepidoptera families. Recently, the utility of morphological data as a source of phylogenetic evidence has been debated. We present the first well supported phylogenetic hypothesis for the butterflies and skippers based on a total-evidence analysis of both traditional morphological characters and new molecular characters from three gene regions (COI, EF-1alpha and wingless). All four data partitions show substantial hidden support for the deeper nodes, which emerges only in a combined analysis in which the addition of morphological data plays a crucial role. With the exception of Nymphalidae, the traditionally recognized families are found to be strongly supported monophyletic clades with the following relationships: (Hesperiidae+(Papilionidae+(Pieridae+(Nymphalidae+(Lycaenidae+Riodinidae))))). Nymphalidae is recovered as a monophyletic clade but this clade does not have strong support. Lycaenidae and Riodinidae are sister groups with strong support and we suggest that the latter be given family rank. The position of Pieridae as the sister taxon to nymphalids, lycaenids and riodinids is supported by morphology and the EF-1alpha data but conflicted by the COI and wingless data. Hedylidae are more likely to be related to butterflies and skippers than geometrid moths and appear to be the sister group to Papilionoidea+Hesperioidea.  相似文献   

14.
1. Data on host plant associations of butterflies (Papilionoidea, excluding Hesperiidae) from two biogeographical regions were used to investigate (1) whether tropical herbivores are more narrowly specialized with regard to host plant choice than those of northern temperate zones, and (2) whether tropical butterflies show a greater diversity of host plant affiliations. 2. There was no evidence for a more restricted diet breadth of tropical butterflies, with diet breadth being measured as number of host plant families used per species. In the families Papilionidae, Pieridae, and Nymphalidae, host plant ranges of West Palaearctic and South-East Asian species are similar, whereas in one speciose group within the Lycaenidae, the Polyommatini, tropical species are significantly more polyphagous. 3. Diet breadth also differs among higher butterfly taxa. While Papilionidae, Pieridae, the nymphalid subfamilies Satyrinae, Morphinae, Libytheinae and Apaturinae, as well as the temperate-zone Polyommatini in the Lycaenidae are composed predominantly of host specialists, the degree of polyphagy is higher among the remaining nymphalid subfamilies and in many lycaenids. These results challenge strongly the view that tropical herbivores are generally more specialized in this regard than herbivores of higher latitudes. Rather, chemical constraints and phylogenetic conservatism shape host plant associations in many taxa in such a way that differences between temperate and tropical representatives are slight. 4. Host plant diversity, measured as the number of plant families used per butterfly family and by application of the log-series model, is much higher in South-East Asian Nymphalidae and Lycaenidae (the two largest families) than in their Western Palaearctic relatives. No such differences are observed in the Papilionidae and Pieridae (the two smaller families). Besides effects of sample size, the strong association of papilionid and pierid butterflies with plants characterized by a small set of classes of secondary plant compounds might generally restrict their capability to utilize a broader taxonomic range of host plants. 5. The results indicate that high floral diversity can be reflected by higher diversity of host plant affiliations of herbivores, but taxonomic idiosyncrasies render it difficult to draw generalized conclusions.  相似文献   

15.
16.
Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.  相似文献   

17.
The Arctic fauna includes 106 species of diurnal butterflies: Papilionidae (6 species), Pieridae (20), Lycaenidae (18), Nymphalidae (30), Satyridae (27), and Hesperiidae (5). Among them, representatives of the family Nymphalidae predominate as to the features characterizing the biological progress in the Arctic, as well as to the number of the most strongly pronounced arctic forms. The family Satyridae shares the first place with Nymphalidae by the number of species, but differs from the latter in the uneven or local distribution. The family Pieridae demonstrates a wide distribution of polyzonal and boreal species in the tundra zone. The distribution patterns of Lycaenidae are different in the Eurasian and Beringian-American sectors. Species of Papilionidae and Hesperiidae occur only in the southern part of the tundra zone. Each family is characterized by specific distribution in the Arctic subzones and landscapes and by latitudinal trends in its specific ratio in the faunas. There are 30 to 40 arctic species, including arctic proper (euarctic and hemiarctic) and hypoarctic, arctoalpine, arctomontane, and arctoboreal species. The species developing successfully under high-latitude conditions are Boloria chariclea, B. polaris, B. improba, Colias nastes, C. hecla, and Erebia fasciata; the first two species can be considered true euarctic forms. Specific features of the latitudinal and longitudinal distribution of the butterfly species in different parts of the Arctic are discussed.  相似文献   

18.
This is the second part of a revision of the most plesiomorphic genera in the amphipod family Stenothoidae sensu lato (see Krapp-Schickel and Koenemann 2006 for an overview and Krapp-Schickel 2008 for the first part). 41 species not belonging to Metopoides were plotted in a matrix using the same 61 characters as in the first part. The resulting group of Proboloides species (most probably not existing in the Austral-Antarctic region) is discussed, a key for the members given and two new genera erected. Some species described as Proboloides are redescribed and 2 species transferred to Metopoides. A key for all actual members of. The remaining species, i.e. those actually being in the genera Torometopa and Scaphodactylus, will be dealt with in the final part of this series, together with a key to all of them.  相似文献   

19.
The 3' region of the external transcribed spacer (ETS) of 18S-26S nuclear ribosomal DNA was sequenced in 19 representatives of Calycadenia/Osmadenia and two outgroup species (Compositae) to assess its utility for phylogeny reconstruction compared to rDNA internal transcribed spacer (ITS) data. Universal primers based on plant, fungal, and animal sequences were designed to amplify the intergenic spacer (IGS) and an angiosperm primer was constructed to sequence the 3' end of the ETS in members of tribe Heliantheae. Based on these sequences, an internal ETS primer useful across Heliantheae sensu lato was designed to amplify and sequence directly the 3' ETS region in the study taxa, which were the subjects of an earlier phylogenetic investigation based on ITS sequences. Size variation in the amplified ETS region varied across taxa of Heliantheae sensu lato from approximately 350 to 700 bp, in part attributable to an approximately 200-bp tandem duplication in a common ancestor of Calycadenia/Osmadenia. Phylogenetic analysis of the 200-bp subrepeats and examination of apomorphic changes in the duplicated region demonstrate that the subrepeats in Calycadenia/Osmadenia have evolved divergently. Phylogenetic analyses of the entire amplified ETS region yielded a highly resolved strict consensus tree that is nearly identical in topology to the ITS tree, with strong bootstrap and decay support on most branches. Parsimony analyses of combined ETS and ITS data yielded a strict consensus tree that is better resolved and generally better supported than trees based on either data set analyzed separately. We calculated an approximately 1.3- to 2.4-fold higher rate of sequence evolution by nucleotide substitution in the ETS region studied than in ITS-1 + ITS-2. A similar disparity in the proportion of variable (1.3 ETS:1 ITS) and potentially informative (1.5 ETS:1 ITS) sites was observed for the ingroup. Levels of homoplasy are similar in the ETS and ITS data. We conclude that the ETS holds great promise for augmenting ITS data for phylogenetic studies of young lineages.  相似文献   

20.
Borrelia Ir-5215, isolated from ticks Ixodes ricinus in Ukraine (the Crimean autonomous region), was identified by the method of the polymorphism of the fragment length of the restriction amplicon of rRNA spacer region 5S-23S. Its Msel-restriction profile was relatively similar to that of B. afzelii. The sequencing of spacer region rrf (5S)-rrl (23S) and 16S rRNA gene, as well as the analysis of the similarity of nucleotide sequences, obtained in the course of these study, revealed the differences between Borrelia sp, lr-5215 and six European species of Borrelia burgdorferi sensu lato and a high level of similarity (more than 95.1% for 5S-23S rRNA and 99.4% for 16S rRNA gene) to three known representatives of genome group A14S (Borrelia spp. A14S, I-77 and PC-Rq17). This suggests that isolated Borrelia lr-5215 is a new representative of pathogenic B. burgdorferi sensu lato genome group A14S, which is spread, together with Central Europe, also in southern Ukraine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号