首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction.  相似文献   

2.
Poliovirus polysomal RNA is naturally uncapped, and as such, its translation must bypass any 5' cap-dependent ribosome recognition event. To elucidate the manner by which poliovirus mRNA is translated, we have determined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. We found striking differences in translatability among the altered mRNAs when assayed in mock-infected and poliovirus-infected HeLa cell extracts. The results identify a functional cis-acting element within the 5' noncoding region of the poliovirus mRNA which enables it to translate in a cap-independent fashion. The major determinant of this element maps between nucleotides 320 and 631 of the 5' end of the poliovirus mRNA. We also show that this region (320 to 631), when fused to a heterologous mRNA, can function in cis to render the mRNA cap independent in translation.  相似文献   

3.
4.
The mRNA encoding the chimeric BCR/ABL oncogene, which is transcribed from the Philadelphia chromosome in human chronic myelogenous leukemia, has a 5' noncoding sequence greater than 500 bases in length which is highly GC rich and contains a short open reading frame. This untranslated sequence has a dramatic inhibitory effect upon translational efficiency in vitro. However, when BCR/ABL message is expressed in certain cell types such as the NIH 3T3 cell line, the 5' noncoding region has little inhibitory effect on translational efficiency.  相似文献   

5.
We report the sequence of the guinea pig p53 cDNA. The comparative analysis of the coding and noncoding regions of p53 cDNAs of all available complete vertebrate sequences has allowed us to single out new conserved signals possibly involved in p53 functional activity. We have focused our attention on the most variable region of the protein, the proline (P)-rich domain, suggested to play a fundamental role in antiproliferative pathways. In this domain we have identified the PXXXXP repeated motif and singled out a common consensus sequence that can be considered a signature for mammalian p53: PXXXXPX{0,4}PX{0,9}PA(T,P,I,)(S,P)WPL. We have demonstrated the significance of the PXXXXP motif in SH3-binding protein and suggested its structure to be a loop. Also, the 5' and 3' untranslated regions (UTRs) of the guinea pig were sequenced, and this study represents the first detailed structural analysis of the UTRs of the p53 mRNAs available in literature. The 5' UTR of guinea pig (233 nt) can be folded into a stable secondary structure resembling that predicted in mouse. The 3' UTR of guinea pig is 771 nt long and shows higher similarity with human than with rodent sequences, having a region of about 350 nt that is deleted in rat and mouse. In the 3' UTR we have identified the presence of a mammalian-wide interspersed repeat sequence and of a cytoplasmic polyadenylation element, which could be involved in translational activation by promoting polyadenylation of mRNA, providing information about a possible mechanism of regulation of p53 expression mediated by the 3' UTR of the mRNA. The observations presented here could open new avenues to targeted mutations and experimental approaches useful in investigating new regulation mechanisms of p53 translation, activity, and stability.  相似文献   

6.
Ribonucleotide reductase R2 gene expression is elevated in BALB/c 3T3 fibroblasts treated with transforming growth factor beta 1. We investigated the possibility that the 3'-UTR of ribonucleotide reductase R2 mRNA contains regulatory information for TGF-beta 1 induced message stability. Using end-labeled RNA fragments in gel shift assays and UV cross-linking analyses, we detected in the 3'-UTR a novel 9 nucleotide (nt) cis element, 5'-GAGUUUGAG-3' site, which interacted specifically with a cytosolic protease sensitive factor to form a 75 kDa complex. The cis element protein binding activity was inducible and markedly up-regulated cross-link 4 h after TGF-beta 1 treatment of mouse BALB/c 3T3 cells. Other 3'-UTRs [IRE, GM-CSF, c-myc and homopolymer (U)] were poor competitors to the cis element with regard to forming the TGF-beta 1 dependent RNA-protein complex. However, the cis element effectively competed out the formation of the R2 3'-UTR protein complex. Cytosolic extracts from a variety of mammalian cell lines (monkey Cos7, several mouse fibrosarcomas and human HeLa S3) demonstrated similar TGF-beta 1 dependent RNA-protein band shifts as cell extract from BALB/c 3T3 mouse fibroblasts. Binding was completely prevented by several different mutations within the cis element, and by substitution mutagenesis, we were able to predict the consensus sequences, 5'-GAGUUUNNN-3' and 5'-NNNUUUGAG-3' for optimal protein binding. These results support a model in which the 9 nt region functions in cis to destabilize R2 mRNA in cells; and upon activation, a TGF-beta 1 responsive protein is induced and interacts with the 9 nt cis element in a mechanism that leads to stabilization of the mRNA. This appears to be the first example of a mRNA binding site that is involved in TGF-beta 1-mediated effects.  相似文献   

7.
8.
9.
10.
11.
Kumari S  Bugaut A  Balasubramanian S 《Biochemistry》2008,47(48):12664-12669
Nucleic acid secondary structures in the 5' untranslated regions (UTRs) of mRNAs have been shown to play a critical role in translation regulation. We recently demonstrated that a naturally occurring, conserved, and stable RNA G-quadruplex element (5'-GGGAGGGGCGGGUCUGGG-3'), located close to the 5' cap within the 5' UTR of the NRAS proto-oncogene mRNA, modulates gene expression at the translational level. Herein, we show that the translational effect of this G-quadruplex motif in NRAS 5' UTR is not uniform, but rather depends on the location of the G-quadruplex-forming sequence. The RNA G-quadruplex-forming sequence represses translation when situated relatively proximal to the 5' end, within the first 50 nt, in the 5' UTR of the NRAS proto-oncogene, whereas it has no significant effect on translation if located comparatively away from the 5' end. We have also demonstrated that the thermodynamic stability of the RNA G-quadruplex at its natural position within the NRAS 5' UTR is an important factor contributing toward its ability to repress translation.  相似文献   

12.
We have mutated various features of the 5' noncoding region of the HIS4 mRNA in light of established Saccharomyces cerevisiae and mammalian consensus translational initiator regions. Our analysis indicates that insertion mutations that introduce G + C-rich sequences in the leader, particularly those that result in stable stem-loop structures in the 5' noncoding region of the HIS4 message, severely affect translation initiation. Mutations that alter the length of the HIS4 leader from 115 to 39 nucleotides had no effect on expression, and sequence context changes both 5' and 3' to the HIS4 AUG start codon resulted in no more than a twofold decrease of expression. Changing the normal context at HIS4 5'-AAUAAUGG-3' to the optimal sequence context proposed for mammalian initiator regions 5'-CACCAUGG-3' did not result in stimulation of HIS4 expression. These studies, in conjunction with comparative and genetic studies in S. cerevisiae, support a general mechanism of initiation of protein synthesis as proposed by the ribosomal scanning model.  相似文献   

13.
14.
The 3' noncoding region element (AUUUA)n specifically targets many short-lived mRNAs for degradation. Although the mechanism by which this sequence functions is not yet understood, a potential link between facilitated mRNA turnover and translation has been implied by the stabilization of cellular mRNAs in the presence of protein synthesis inhibitors. We therefore directly investigated the role of translation on mRNA stability. We demonstrate that mRNAs which are poorly translated through the introduction of stable secondary structure in the 5' noncoding region are not efficiently targeted for selective destabilization by the (AUUUA)n element. These results suggest that AUUUA-mediated degradation involves either a 5'-->3' exonuclease or is coupled to ongoing translation of the mRNA. To distinguish between these two possibilities, we inserted the poliovirus internal ribosome entry site, which promotes internal ribosome initiation, downstream of the 5' secondary structure. Translation directed by internal ribosome binding was found to fully restore targeted destabilization of AUUUA-containing mRNAs despite the presence of 5' secondary structure. This study therefore demonstrates that selective degradation mediated by the (AUUUA)n element is coupled to ribosome binding or ongoing translation of the mRNA and does not involve 5'-to-3' exonuclease activity.  相似文献   

15.
The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5' nontranslated region (5' NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G(2)/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G(2)/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G(2)/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.  相似文献   

16.
The human multidrug resistance gene MDR1 encodes a membrane-bound protein, referred to as P-glycoprotein, that acts as a pump to extrude toxins from cells. The 3' untranslated region (3'UTR) of the human MDR1 mRNA is very AU-rich (70%) and contains AU-rich sequences similar to those shown to confer rapid decay on c-myc, c-fos, and lymphokine mRNAs. We tested the ability of the MDR1 3'UTR to act as an mRNA destabilizing element in the human hepatoma cell line HepG2. The MDR1 mRNA has an intermediate half-life of 8 h in HepG2 cells compared to a half-life of 30 min for c-myc mRNA. The MDR1 mRNA half-life was prolonged to >20 h upon treatment with the protein synthesis inhibitor cycloheximide. We constructed expression vectors containing the human beta-globin coding region with the 3'UTR from either MDR1 or c-myc. The c-myc 3'UTR increased the decay of the chimeric mRNA, but the MDR1 3'UTR had no effect. We tested the ability of MDR1 3'UTR sequences to compete for interaction with AU-binding proteins in cell extracts; MDR1 RNA probes had a fivefold lower affinity for AU-binding proteins that interact with the c-myc AU-rich 3'UTR. Overall, our data suggest that the MDR1 3'UTR does not behave as an active destabilizing element in HepG2 cells.  相似文献   

17.
18.
Translation initiation on poliovirus mRNA in poliovirus-infected cells has been shown to occur by internal binding of ribosomes to the 5' noncoding region (J. Pelletier and N. Sonenberg, Nature [London] 334:320-325, 1988). Here we show that internal ribosome binding can occur in HeLa cell extracts in vitro. Internal binding to the 5' noncoding region of poliovirus mRNA in a bicistronic context was independent of the upstream open reading frame and did not require poliovirus proteins.  相似文献   

19.
cis-acting determinants of c-myc mRNA stability   总被引:3,自引:0,他引:3  
M D Cole  S E Mango 《Enzyme》1990,44(1-4):167-180
  相似文献   

20.
The involvement of mRNA secondary structure in protein synthesis   总被引:15,自引:0,他引:15  
Translation initiation in eukaryotes is a complex process involving many factors. A key step in this process is the binding of mRNA to the 43S preinitiation complex. This is generally the rate-limiting step in translation initiation and consequently a major determinant of mRNA translational efficiency. The primary and secondary structure of the mRNA 5' noncoding region have been implicated in modulating translational efficiency. Translational efficiency was shown to be inversely proportional to the degree of secondary structure at the mRNA 5' noncoding region. Furthermore, it was shown that cap-binding proteins that interact with the 5' cap structure (m7GpppN) of eukaryotic mRNAs are involved in the "unwinding" of the mRNA secondary structure, in an ATP hydrolysis mediated event, to facilitate ribosome binding. Thus, cap-binding proteins can potentially regulate mRNA translation. Here, we discuss the available data supporting the notion that eukaryotic 5' mRNA secondary structure plays an important role in translation initiation and the possible regulation of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号