首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nieminen ML  Brandt A  Pietilä P  Panula P 《Peptides》2000,21(11):1695-1701
The mRNA expression of neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and the UHR-1/GPR10 receptor were examined using in situ hybridization in rat peripheral tissues. In the hypophysis, modest expression of PrRP and receptor mRNA were seen in the anterior lobe. The trigeminal ganglion was devoid of expression signals. PrRP and UHR-1/GPR10 receptor mRNA:s were found in the adrenal medulla and PrRP mRNA was found in the pancreas. NPFF mRNA was detected in the spleen. In the testis and epididymis, PrRP and UHR-1/GPR10 receptor mRNA:s were detected. The results suggest a limited expression of mammalian RF-amide peptides in the peripheral organs.  相似文献   

2.
Prolactin-releasing peptide (PrRP) is a novel peptide found in bovine hypothalamus as an endogenous ligand of an orphan G-protein-coupled receptor (hGR3). It is known that PrRP is widely distributed and plays roles in the central nervous system (CNS). In particular, PrRP acts as a neurotransmitter that mediates stress and activates the hypothalamo-pituitary-adrenal axis. On the other hand, only a few studies have so far been performed on PrRP in peripheral tissues. Among peripheral tissues, appreciable levels of PrRP are found only in the adrenal gland; however, the PrRP-producing cells in the adrenal gland have not been identified. In this study, we detected PrRP mRNA in the rat adrenal medulla. So, we tried to identify the PrRP-producing cells in primary culture cells of the adrenal medulla. We found immunopositive PrRP cells among the cultured cells from the adrenal gland, but not in the adrenal gland tissue, by means of immunocytochemistry. The PrRP immunopositive cells were double positive for tyrosine hydroxylase (TH) and for phenylethanolamine N-methyltransferase (PNMT), which indicates that PrRP may be produced in a part of the adrenaline cells in the adrenal gland. This is the first report that PrRP is produced in the adrenaline-containing cells of the adrenal gland.  相似文献   

3.
Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.  相似文献   

4.
The prolactin releasing peptide (PrRP) is involved in regulating food intake and body weight homeostasis, but molecular details on the activation of the PrRP receptor remain unclear. C‐terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8‐20) amino acids, respectively, have been suggested to be fully active. The data presented herein indicate this is true for the wildtype receptor only; a 5‐10‐fold loss of activity was found for PrRP8‐20 compared to PrRP20 at two extracellular loop mutants of the receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy performed in TFE and SDS. Additionally, previously reported NMR data, combined with ROSETTA NMR, were employed to determine the structure of amidated PrRP20. The structural ensemble agrees with the spectroscopic data for the full‐length peptide, which exists in an equilibrium between α‐ and 310‐helix. We demonstrate that PrRP8‐20's reduced propensity to form an α‐helix correlates with its reduced biological activity on mutant receptors. Further, distinct amino acid replacements in PrRP significantly decrease affinity and activity but have no influence on the secondary structure of the peptide. We conclude that formation of a primarily α‐helical C‐terminal region of PrRP is critical for receptor activation. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 273–281, 2013.  相似文献   

5.
Both systemic and central effects of a newly discovered prolactin (PRL)-releasing factor (PRF), prolactin-releasing peptide (PrRP), were determined in this study. Systemic injection of PrRP (1 and 10 microg/rat, i.v.) stimulated PRL secretion in ovariectomized, estrogen-treated rats similar to the effect of another PRF, thyrotropin-releasing hormone (TRH). Pretreatment with a dopamine D2 receptor antagonist, sulpiride (1 microg/rat, i.v.), potentiated the stimulatory effect of both PrRP and TRH on PRL secretion. Using the double-labeling immunohistochemical method, PrRP-immunoreactive terminals were found in close contact with tyrosine-hydroxylase-immunoreactive neurons in the hypothalamic arcuate nucleus. Central administration of PrRP (0.1-1,000 ng/rat, i.c.v.) stimulated tuberoinfundibular but not nigrostriatal dopaminergic neuronal activity in 15 min. Levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence and striatum were used as indices for tuberoinfundibular dopaminergic (TIDA) and nigrostriatal dopaminergic neuronal activities, respectively. The serum PRL level, however, was not significantly changed. Similar treatment with TRH (10 ng/rat, i.c.v.) stimulated and inhibited TIDA neuronal activity and serum PRL, respectively, at 30 min. In summary, PrRP may play a role in both the central and peripheral control of PRL secretion.  相似文献   

6.
The recently discovered prolactin-releasing peptide (PrRP) binds to the PrRP receptor and is involved in endocrine regulation and energy metabolism. However, its main physiological role is currently unknown. Two biologically active isoforms of PrRP exist: the 31 (PrRP31) and the 20 (PrRP20) amino acid forms, which both contain a C-terminal Phe amide sequence. In the present study, the PrRP receptor was immunodetected in three rodent tumor pituitary cell lines: GH3, AtT20 and RC-4B/C cells. The saturation binding of radioiodinated PrRP31 to intact cells demonstrated a Kd in the 10−9 M range and a Bmax in the range of tens of thousands binding sites per cell. For binding to RC-4B/C cells, both PrRP31 and PrRP20 competed with 125I-PrRP31 with a similar Ki. The C-terminal analog PrRP13 showed lower binding potency compared to PrRP31 and PrRP20. All PrRP analogs increased the phosphorylation of MAPK/ERK1/2 (mitogen-activated phosphorylase/extracellular-regulated kinase) and CREB (cAMP response element-binding protein) in RC-4B/C cells. Additionally, prolactin release was induced by the PrRP analogs in a dose-dependent manner in RC-4B/C cells. Finally, food intake after intracerebroventricular administration of PrRP analogs in fasted mice was followed. Both PrRP31 and PrRP20 decreased food intake, but PrRP13 did not show significant effect. Studies on pituitary cell lines expressing the PrRP receptor are more physiologically relevant than those on cells transfected with the receptor. This cell type can be used as a model system for pharmacological studies searching for PrRP antagonists and stable effective PrRP agonists, as these drugs may have potential as anti-obesity agents.  相似文献   

7.
8.
High levels of specific prolactin-releasing peptide (PrRP) binding sites have been found in the myocardium; however, the functional importance of PrRP in the regulation of cardiac function is unknown. In isolated perfused rat hearts, infusion of PrRP (1–100 nM) induced a dose-dependent positive inotropic effect. Inhibition of cAMP catabolism by IBMX, a phosphodiesterase inhibitor, failed to augment the contractile effect of PrRP. The protein phosphatase (PP1/PP2A) inhibitor calyculin A increased the inotropic response to PrRP, whereas the PP2A inhibitor okadaic acid had no effect. Ro32-0432, a protein kinase Cα (PKCα) inhibitor, significantly enhanced the inotropic effect of PrRP as well as the phosphorylation of phospholamban at Ser-16. In conclusion, the present data define a hitherto unrecognized role for PrRP in the regulation of cardiovascular system by showing that PrRP exerts a direct positive inotropic effect. Moreover, our results suggest that the cAMP-independent inotropic response to PrRP is suppressed by concurrent activation of PKCα and PP1.  相似文献   

9.
Central administration of a single dose of prolactin-releasing peptide (PrRP) causes a reduction in both fast-induced and nocturnal food intake and body weight gain. The aim of this study was to examine the effect of repeated administration of PrRP on energy homeostasis, including a measure of the expression of the mitochondrial uncoupling protein-1 (UCP-1) in brown adipose tissue. Conscious, free-feeding animals received central injections of PrRP (4 nmol icv) or vehicle. A single injection at 1000 caused a sustained hyperthermia over the 4-h test period and an increase in the expression of UCP-1 mRNA. Repeated, twice daily injection caused a reduction in body weight gain greater than that seen in pair-fed animals for the first 48-72 h. After 72 h, the animals became refractory to the actions of PrRP. The pair-fed group showed a reduction in UCP-1 mRNA expression at 48 h, which was reversed by PrRP treatment. This study indicates that PrRP exerts its effects on energy homeostasis in the short-medium term by reducing food intake and increasing energy expenditure.  相似文献   

10.
Prolactin-releasing peptide (PrRP)-induced secretion of prolactin is not currently considered a primary function of PrRP, but the development of late-onset obesity in both PrRP and PrRP receptor knock-out mice indicates the unique anorexigenic properties of PrRP. In our recent study, we showed comparable potencies of peptides PrRP31 and PrRP20 in binding, intracellular signaling and prolactin release in pituitary RC-4B/C cells, and anorexigenic effect after central administration in fasted mice. In the present study, eight analogs of PrRP20 with C-terminal Phe amide modified with a bulky side chain or a halogenated aromatic ring revealed high binding potency, activation of mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK1/2) and cAMP response element-binding protein (CREB) and prolactin release in RC-4B/C cells. In particular, [PheNO231]PrRP20, [1-Nal31]PrRP20, [2-Nal31]PrRP20 and [Tyr31]PrRP20 showed not only in vitro effects comparable or higher than those of PrRP20, but also a very significant and long-lasting anorexigenic effect after central administration in fasted mice. The design of potent and long-lasting PrRP analogs with selective anorexigenic properties promises to contribute to the study of food intake disorders.  相似文献   

11.
In this study, we investigated the effect of chronic repeated restraint (RR) on prolactin-releasing peptide (PrRP) expression. In the brainstem, where PrRP colocalize with norepinephrine in neurons of the A1 and A2 catecholaminergic cell groups, the expression of tyrosine hydroxylase (TH) has also been examined. In the brainstem, but not in the hypothalamus, the basal PrRP expression in female rats was higher than that in the males that was abolished by ovariectomy. RR evoked an elevation of PrRP expression in all areas investigated, with smaller reaction in the brainstems of females. There was no gender-related difference in the RR-evoked TH expression. Elevation of PrRP was relatively higher than elevation of TH, causing a shift in PrRP/TH ratio in the brainstem after RR. Estrogen α receptors were found in the PrRP neurons of the A1 and A2 cell groups, but not in the hypothalamus. Bilateral lesions of the hypothalamic paraventricular nucleus did not prevent RR-evoked changes. Elevated PrRP production parallel with increased PrRP/TH ratio in A1/A2 neurons indicate that: (i) there is a clear difference in the regulation of TH and PrRP expression after RR, and (ii) among other factors this may also contribute to the changed sensitivity of the hypothalamo-pituitary–adrenal axis during chronic stress.  相似文献   

12.
Trophoblast giant cells in the mouse placentas are polyploid cells that form as a result of endoreduplication. The giant cells form the outermost layer of the extraembryonic compartment and produce a number of pregnancy-specific hormones, including prolactin family members. Here we demonstrate that trophoblast giant cells are increased, and display upregulation of prolactin releasing peptide (PrRP) receptor in the p53-null (p53(-/-)) embryonic placentas. At day 13.5 of gestation, the weight of p53(-/-) placentas was less than that of both wild-type and p53(+/-) placentas. In p53(-/-) placentas, the spongiotrophoblast layer was significantly decreased in thickness, and the trophoblast giant cells were observed not only in the outer layer of placentas but in both the spongiotrophoblast layer and the labyrinthine layer. The giant cells spread over the spongiotrophoblast and labyrinthine layer in p53(-/-) placentas displayed more intensive expression of immunoreactive PrRP receptor than in wild-type placentas. Previous studies indicated that the association between PrRP and PrRP receptor physiologically involves in the expression and secretion of the peptide hormones, including prolactin and growth hormones. These results suggest that p53 may regulate the differentiation of trophoblast giant cells, and may control the physiological PrRP stimuli in mouse placentas.  相似文献   

13.
Prolactin-releasing peptide (PrRP) was first isolated from bovine hypothalamus as an orphan G-protein-coupled receptor using the strategy of reverse pharmacology. The initial studies showed that PrRP was a potent and specific prolactin-releasing factor. Morphological and physiological studies, however, indicated that PrRP may play a wide range of roles in neuroendocrinology other than prolactin release, i.e., metabolic homeostasis, stress responses, cardiovascular regulation, gonadotropin secretion, GH secretion and sleep regulation. This review will provide the current knowledge of PrRP, especially its roles in energy metabolism and stress responses.  相似文献   

14.
15.
The prolactin-releasing peptide receptor and its bioactive RF-amide peptide (PrRP20) have been investigated to explore the ligand binding mode of peptide G-protein-coupled receptors (GPCRs). By receptor mutagenesis, we identified the conserved aspartate in the upper transmembrane helix 6 (Asp(6.59)) of the receptor as the first position that directly interacts with arginine 19 of the ligand (Arg(19)). Replacement of Asp(6.59) with Arg(19) of PrRP20 led to D6.59R, which turned out to be a constitutively active receptor mutant (CAM). This suggests that the mutated residue at the top of transmembrane helix 6 mimics Arg(19) by interacting with additional binding partners in the receptor. Next, we generated an initial comparative model of this CAM because no ligand docking was required, and we selected the next set of receptor mutants to find the engaged partners of the binding pocket. In an iterative process, we identified two acidic residues and two hydrophobic residues that form the peptide ligand binding pocket. As all residues are localized on top or in the upper part of the transmembrane domains, we clearly can show that the extracellular surface of the receptor is sufficient for full signal transduction for prolactin-releasing peptide, rather than a deep, membrane-embedded binding pocket. This contributes to the knowledge of the binding of peptide ligands to GPCRs and might facilitate the development of GPCR ligands, but it also provides new targeting of CAMs involved in hereditary diseases.  相似文献   

16.
Stimulation of prolactin release by prolactin-releasing peptide in rats.   总被引:14,自引:0,他引:14  
We have previously reported a hypothalamic peptide that shows specific prolactin (PRL)-releasing activity in vitro, named prolactin-releasing peptide (PrRP). However, its activity in vivo has not yet been shown. In this study, we examined whether PrRP could induce specific PRL release in vivo using normal cycling female and male rats. Intravenous injection of PrRP31 increased plasma PRL levels in rats in a dose-dependent manner. PrRP31 (50 nmol/kg i.v.) significantly (P < 0.05) stimulated plasma PRL levels within 25 min after injection in rats in proestrus, estrus, and metestrus. A higher dose of PrRP31 (500 nmol/kg i.v.) was necessary for a significant increase in plasma PRL levels in male rats. These results clearly indicate that female rats, especially at proestrus, are more sensitive to PrRP-induced PRL secretion than male rats. The effect of PrRP on PRL release is affected considerably by the estrous cycle and sex, which suggests that PrRP sensitivity is controlled by the endogenous hormonal milieu, such as estrogen levels. PrRP31 did not affect other pituitary hormone secretions. The results indicate that PrRP shows specific PRL-releasing activity in vivo as well as in vitro and suggest that it plays an important role in the regulation of PRL release under certain physiological conditions.  相似文献   

17.
Yuan ZF  Pan JT 《Life sciences》2002,71(8):899-910
The roles of endogenous angiotensin II (AII), thyrotropin-releasing hormone (TRH) and prolactin-releasing peptide (PrRP) on the estrogen-induced prolactin (PRL) surge and the diurnal change of tuberoinfundibular dopaminergic (TIDA) neuronal activity were assessed in this study. Ovariectomized, estrogen-primed rats implanted with intracerebroventricular cannula received daily injection of antisense oligodeoxynucleotide (ODN, 10 microg/3 microl) against the mRNA of AII, TRH or PrRP for two days. Artificial cerebrospinal fluid or the sense ODN were used as the control. In the first experiment, serial blood samples (0.3 ml each) were obtained hourly from each rat through a pre-implanted intraatrial catheter from 1100 to 1700h. Half of the rats pretreated with respective antisense ODN received single injections of AII, TRH or PrRP (1 microg each, i.v.) at 1400h. In the second experiment, groups of rats were decapitated either at 1000 or 1500h. The hypothalamic median eminence tissue of each rat was dissected out and its DOPAC content was used as the index for TIDA neuronal activity. Plasma and serum PRL levels were determined by radioimmunoassay. Pretreatment of antisense ODN against the mRNA of either AII or TRH significantly attenuated the PRL surge; replacement injection of AII or TRH restored the surge. The effect of antisense ODN against PrRP was less significant. None of the treatments significantly affected the diurnal changes of TIDA neuronal activity. In summary, both AII and TRH may play an important role as the PRL-releasing hormone involved in the estrogen-induced afternoon PRL surge.  相似文献   

18.
A potential role for prolactin-releasing peptide (PrRP) in appetite regulation and hydromineral balance in goldfish was examined. PrRP was found to be expressed in discrete regions of the goldfish brain, in particular, the hypothalamus. Intraperitoneal (IP) or intracerebroventricular administration of PrRP had dose-dependent effects to suppress food intake in goldfish. Hypothalamic PrRP mRNA expression significantly increased after feeding, as well as after 7 days of food deprivation. Refeeding fish after 7 days food deprivation did not result in a postprandial increase in PrRP mRNA expression. These data suggest an anorexigenic role for PrRP in the short term around a scheduled meal time, but not over the longer term. IP injection of PrRP significantly increased pituitary prolactin (PRL) mRNA levels, suggesting involvement in the regulation of lactotroph activity. Acclimating goldfish to an ion-poor environment decreased serum osmolality and increased PrRP and PRL mRNA levels, providing evidence for PrRP involvement in hydromineral balance through its actions on lactotrophs. Acclimation to ion-poor water diminished the anorexigenic properties of PrRP in goldfish, indicating that a role for PrRP in goldfish satiation is counterbalanced by alternate systemic needs (i.e., osmoregulatory). This was further supported by an ability to reinstate the anorexigenic actions of PrRP in fish acclimated to ion-poor water by feeding a salt-rich diet. These studies provide evidence that PrRP is involved in regulating appetite and hydromineral balance in fish, and that the degree of involvement in either process varies according to overall systemic needs in response to environmental conditions.  相似文献   

19.
We administered prolactin-releasing peptide (PrRP) or anti-PrRP antiserum to goldfish in fresh water and analyzed their effects on prolactin and osmoregulatory mechanisms. The pituitary mRNA level of prolactin increased by PrRP but decreased by anti-PrRP. The rate of water inflow in the gills decreased by PrRP and increased by anti-PrRP, showing that PrRP restricts branchial water permeability, as also restricted by prolactin. PrRP also expanded the mucous cell layers on the scales, which may restrict efficiently water inflow by the mucous system. Eventually, the plasma osmotic pressure decreased by anti-PrRP. We conclude that PrRP is essential to maintain prolactin levels and osmotic balance in fresh water.  相似文献   

20.
Samson WK  Taylor MM 《Peptides》2006,27(5):1099-1103
Prolactin releasing peptide (PrRP) was originally reported to act in the anterior lobe of the pituitary gland to stimulate prolactin (PRL) release; however, numerous other pharmacologic actions of PrRP have been described. In the central nervous system PrRP inhibits food intake, stimulates sympathetic tone, and activates stress hormone secretion. Here, we confirm the presence of immunoreactive PrRP in a pheochromocytoma-derived cell line (PC-12) and the ability of exogenous PrRP to stimulate adenylyl cyclase activity in these cultures. Our novel findings are that PrRP stimulated PC-12 cell growth. Furthermore, a role for endogenous PrRP in PC-12 cell growth is suggested by our observations that antisense oligonucleotides and small interfering RNA molecules, which decrease peptide content in these cells, also decrease thymidine incorporation, suggesting an autocrine action of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号