首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
裴广廷  马红亮  林伟  高人  尹云锋  杨柳明 《生态学报》2015,35(23):7774-7784
为探究氨基酸氮形态对亚热带土壤氮素含量及转化的影响,选择建瓯市万木林保护区的山地红壤为对象,采用室内培养实验法,通过设计60%和90%WHC两种土壤含水量并添加不同性质氨基酸,测定了土壤中铵态氮、硝态氮、可溶性有机氮的含量和氧化亚氮的释放量,分析了可溶性有机碳、土壤p H值的大小变化及其与氮素的相互关系。结果表明:与对照处理相比,氨基酸添加显著增加了土壤NH_4~+-N含量并使土壤p H值升高,且在一定程度上解除了高含水量(90%WHC)对NH_4~+-N产生的抑制,其中甲硫氨基酸的效果最为明显。酸性、碱性、中性氨基酸对土壤NO_3~--N含量和N_2O释放影响不显著,但甲硫氨基酸可显著抑制土壤硝化从而导致NH_4~+-N的积累,并在培养前期抑制土壤N_2O产生而在培养后期促进N_2O释放,总体上促进N_2O释放。60%WHC的氨基酸添加处理较90%WHC条件下降低土壤可溶性有机氮的幅度更大。氨基酸对土壤氮素转化的影响与带电性关系较小,而可能与其分解产物密切相关。可见,不同性质氨基酸处理对森林土壤氮素含量及转化存在不同程度的影响,且甲硫氨基酸对土壤氮素转化的影响机理值得深入研究。  相似文献   

2.
Amino acid uptake in deciduous and coniferous taiga ecosystems   总被引:2,自引:0,他引:2  
We measured in situ uptake of amino acids and ammonium across deciduous and coniferous taiga forest ecosystems in interior Alaska to examine the idea that late successional (coniferous) forests rely more heavily on dissolved organic nitrogen (DON), than do early successional (deciduous) ecosystems. We traced 15N-NH4+ and 13C-15N-amino acids from the soil solution into plant roots and soil pools over a 24 h period in stands of early successional willow and late successional black spruce. Late successional soils have much higher concentrations of amino acid in soil solution and a greater ratio of DON to dissolved inorganic N (DIN) (ammonium plus nitrate) than do early successional soils. Moreover, late successional coniferous forests exhibit higher rates of soil proteolytic activity, but lower rates of inorganic N turnover. Differences in ammonium and amino acid uptake by early successional willow stands were insignificant. By contrast, the in situ uptake of amino acid by late successional black spruce forests were approximately 4-fold greater than ammonium uptake. The relative difference in uptake of ammonium and amino acids in these forests was approximately proportional to the relative difference of these N forms in the soil solution. Thus, we suggest that differences in uptake of different N forms across succession in these boreal forests largely reflect edaphic variation in available soil N (composition), rather than any apparent physiological specialization to absorb particular forms of N. These finding are relevant to our understanding of how taiga ecosystems may respond to increases in temperature, fire frequency, N deposition, and other potential consequences of global change.  相似文献   

3.
Populations of the two native Antarctic vascular plant species (Deschampsia antarctica and Colobanthus quitensis) have expanded rapidly in recent decades, yet little is known about the effects of these expansions on soil nutrient cycling. We measured the concentrations of dissolved organic carbon (DOC) and nitrogen (DON), amino acids and inorganic N in soils under these two vascular plant species, and under mosses and lichens, over a growing season at Signy Island in the maritime Antarctic. We recorded higher concentrations of nitrate, total dissolved nitrogen, DOC, DON and free amino acids in soil under D. antarctica and C. quitensis than in lichen or moss dominated soils. Each vegetation cover gave a unique profile of individual free amino acids in soil solution. Significant interactions between soil type and time were found for free amino acid concentrations and C/N ratios, indicating that vascular plants significantly change the temporal dynamics of N mineralization and immobilization. We conclude that D. antarctica and C. quitensis exert a significant influence over C and N cycling in the maritime Antarctic, and that their recent population expansion will have led to significant changes in the amount, type and rate of organic C and N cycling in soil.  相似文献   

4.
Despite increasing recognition that free amino acids can be an important source of N for plant uptake, we have a poor understanding of environmental variation in the availability of amino-acid N in soils outside of arctic, alpine and boreal regions. I investigated patterns of amino-acid availability along a temperate forest fertility gradient ranging from low mineral N availability, oak-dominated forests to high mineral N availability, maple-basswood forests (5 sites). I measured standing pools of free amino acids, soluble peptides, ammonium and nitrate, rates of amino acid production (native proteolysis activity) and rates of consumption of a 15N-labeled leucine tracer. Standing pools of amino acid N decreased consistently along the fertility gradient from the low fertility black oak/white oak system to the high fertility sugar maple/basswood system, with a 25-fold difference in pool sizes between the poorest and richest sites. Standing pools of soluble peptides varied little among sites, instead, the relationship between free amino acids and peptides changed markedly across the gradient. At low fertility sites free amino acids were positively correlated with soluble peptides, whereas free amino acid pools were universally low at high fertility sites, regardless of peptide pools. Assays for native proteolysis activity indicated that amino acid production did not vary significantly among sites. Recovery of leucine tracer in inorganic (NH4 + and NO3 ) pools and in residual soil organic matter both increased with increasing soil fertility; however, total consumption of the added amino-acid tracer did not vary among sites. Results from this study demonstrate that free amino acids can make an important contribution to potentially plant-available N pools in temperate forest soils, particularly at low fertility sites.  相似文献   

5.
Conventional studies of nitrogen (N) cycling in forest ecosystems have focused on inorganic N uptake as the primary source of N for plant metabolism. More recently, however, alternative sources of N for plant nutrition, such as free amino acids, have gained attention, particularly in nutrient-limited systems. Using a multiple stable isotope (13C and 15N) design, that allowed us to simultaneously assess root uptake of ammonium (NH4 +) and glycine, we compared the cycling dynamics of NH4 + and amino acid N within the soils of several interior Alaskan floodplain balsam poplar stands. Our design included multiple sampling periods extending from 45 min to 14 days, which permitted us to study interpool transfers of our carbon (C) and N isotopes over time. Microbial biomass N was the largest sink of both 15N-ammonium and glycine. Percent recovery of 15N for this pool was an order of magnitude larger than fine-root 15N uptake for most sampling periods. Although recovery of 15N in fine-root biomass was small, amino acid N and NH4 + were assimilated at approximately the same rate irrespective of sampling period, and total recovery was still increasing 2 weeks after application. Recovery of 15N in bulk soil samples did not vary significantly over time for either treatment. However, bulk soil 13C declined steadily during the experiment, measuring less than 30% recovery of added label after 14 days. We suspect that the majority of 13C lost from our soils was respired. Soil microorganisms strongly outcompeted plants in the short term for both NH4 + and amino acid N. However, amino acid N appears to cycle through soil N pools at approximately the same rate as inorganic N forms. The similarity in uptake patterns for inorganic and organic N suggests that these stands are meeting part of their N requirements directly from amino acids.  相似文献   

6.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

7.
We know little about the mechanisms that cause rapid losses in the soil organic N pool during cropping. As the analysis of amino acid enantiomers can provide insight into both the fate of microbial N and the ageing of cells in the environment, we used this technique as a tool to examine how the pool of protein-bound N in subtropical Plinthosols responds to increasing duration of arable cropping. The samples comprised bulk soils (0–20 cm) and clay fractions from each of three agro-ecosystems in semiarid South Africa; the sites have been cropped for periods varying from 0 to 98 years. The amino acid enantiomers contributed 34% to the total N content. With increasing number of years a piece of land has been cropped, the amino acid concentrations declined bi-exponentially to about 30% of their initial level in the native grasslands. Changes of the remaining soil protein-N pool were indicated by alterations in the d-content of individual amino acids. As the years of arable cropping increased, the proportions of d-alanine and d-glutamic acid increased relative to the respective l-enantiomers. This was attributed to an accumulation of N in residues of bacterial cell walls. In contrast, the d/l-ratios of leucine and aspartic acid declined in the long-term cultivated plots, probably reflecting losses of old amino acid-N reserves at the most degraded arable land.  相似文献   

8.
Free amino acids (FAA) constitute a significant fraction of dissolved organic nitrogen (N) in forest soils and play an important role in the N cycle of these ecosystems. However, comparatively little attention has been given to their role as labile carbon (C) substrates that might influence the metabolic status of resident microbial populations. We hypothesized that the residence time of simple C substrates, such as FAA, are mechanistically linked to the turnover of endogenous soil C pools. We tested this hypothesis across a latitudinal gradient of forested ecosystems that differ sharply with regard to climate, overstory taxon, and edaphic properties. Using a combined laboratory and field approach, we compared the turnover of isotopically labeled glycine in situ to the turnover of mineralizable soil C (Cmin) at each site. The turnover of glycine was rapid (residence times <2 h) regardless of soil type. However, across all ecosystems glycine turnover rates were strongly correlated with indices of soil organic matter quality. For example, C:N ratios for the upper soil horizons explained ~80% of the variability observed in glycine turnover, and there was a strong positive correlation between in situ glycine-C turnover and Cmin measured in the laboratory. The turnover of glycine in situ was better explained by changes in soil C availability than cross-ecosystem variation in soil temperature or concentrations of dissolved inorganic N and FAA-N. This suggests the consumption of these low-molecular-weight substrates by soil microorganisms may be governed as much by the overall decomposability of soil C as by N limitation to microbial growth.  相似文献   

9.
The availability of phosphorus (P) can limit net primary production (NPP) in tropical rainforests growing on highly weathered soils. Although it is well known that plant roots release organic acids to acquire P from P-deficient soils, the importance of organic acid exudation in P-limited tropical rainforests has rarely been verified. Study sites were located in two tropical montane rainforests (a P-deficient older soil and a P-rich younger soil) and a tropical lowland rainforest on Mt. Kinabalu, Borneo to analyze environmental control of organic acid exudation with respect to soil P availability, tree genus, and NPP. We quantified root exudation of oxalic, citric, and malic acids using in situ methods in which live fine roots were placed in syringes containing nutrient solution. Exudation rates of organic acids were greatest in the P-deficient soil in the tropical montane rainforest. The carbon (C) fluxes of organic acid exudation in the P-deficient soil (0.7?mol?C?m?2?month?1) represented 16.6% of the aboveground NPP, which was greater than those in the P-rich soil (3.1%) and in the lowland rainforest (4.7%), which exhibited higher NPP. The exudation rates of organic acids increased with increasing root surface area and tip number. A shift in vegetation composition toward dominance by tree species exhibiting a larger root surface area might contribute to the higher organic acid exudation observed in P-deficient soil. Our results quantitatively showed that tree roots can release greater quantities of organic acids in response to P deficiency in tropical rainforests.  相似文献   

10.
Native prairie and grassland soils are known to accumulate little inorganic N; however, N03 is constantly being formed and re-immobilized. This suggests that microorganisms in prairie soils would be highly efficient in the assimilation of N03 and would regularly have the assimilatory N03 reductase (ANR) enzyme in an induced and active state. Aerated slurries and static systems prepared from prairie and cultivated soils amended with glucose and N03 were observed for changes in N03 concentration with time. Nitrate assimilation in the presence of glucose occurred more rapidly in cultivated than in prairie soils from the same soil map unit. Nitrate assimilation rates were not affected by inoculation of prairie soil with cultivated soil. It has been reported that the addition of glucose and NO3 to soils results in increased peptidase activity and a release of free amino acids. Mixing, sieving, and slurrying of prairie soils followed by treatment with glucose and NO3 may release free amino acids and other ANR inhibitors into the prairie soil slurries. Prairie soils had higher concentrations of soluble amino-N than cultivated soils with or without glucose and N03 additions. Prairie soils also had greater concentrations of total Kjeldahl N and readily hydrolyzed amino acids than corresponding cultivated soils.  相似文献   

11.
Land-use and land-cover strongly influence soil properties such as the amount of soil organic carbon (SOC), aggregate structure and SOC turnover processes. We studied the effects of a vegetation shift from forest to grassland 90 years ago in soils derived from andesite material on Barro Colorado Island (BCI), Panama. We quantified the amount of carbon (C) and nitrogen (N) and determined the turnover of C in bulk soil, water stable aggregates (WSA) of different size classes (<53 μm, 53–250 μm, 250–2000 μm and 2000–8000 μm) and density fractions (free light fraction, intra-aggregate particulate organic matter and mineral associated soil organic C). Total SOC stocks (0–50 cm) under forest (84 Mg C ha−1) and grassland (64 Mg C ha−1) did not differ significantly. Our results revealed that vegetation type did not have an effect on aggregate structure and stability. The investigated soils at BCI did not show higher C and N concentrations in larger aggregates, indicating that organic material is not the major binding agent in these soils to form aggregates. Based on δ13C values and treating bulk soil as a single, homogenous C pool we estimated a mean residence time (MRT) of 69 years for the surface layer (0–5 cm). The MRT varied among the different SOC fractions and among depth. In 0–5 cm, MRT of intra-aggregate particulate organic matter (iPOM) was 29 years; whereas mineral associated soil organic C (mSOC) had a MRT of 124 years. These soils have substantial resilience to C and N losses because the >90% of C and N is associated with mSOC, which has a comparatively long MRT.  相似文献   

12.
Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal association. Using 13C and 15N, we observed in situ the cycling dynamics of NH4 + and glycine through various soil pools and fine roots over 14 days. Recovery of 15N as soil N varied with respect to N form, forest type, and sampling period; however, there were similarities in the cycling dynamics of glycine and NH4 + among all forest types. Microbial immobilization of 15N was immediately apparent for both treatments and represented the largest sink (~25%) for 15N among extractable soil N pools during the first 24 h. In contrast, fine roots were a relatively small sink (<10%) for both N forms, but fine root 13C enrichment indicated that plants in all forest types absorbed glycine intact, suggesting that plants and microbes effectively target the same labile soil N pools. Relative uptake of amino acid-N versus NH4 + varied significantly among sites and approximately half of this variation was explained by mycorrhizal association. Estimates of plant uptake of amino acid-N relative to NH4 + were 3× higher in ectomycorrhizal-dominated stands (1.6 ± 0.2) than arbuscular mycorrhizae-dominated stands (0.5 ± 0.1). We conclude that free amino acids are an important component of the N economy in all stands studied; however, in these natural environments plant uptake of organic N relative to inorganic N is explained as much by mycorrhizal association as by the availability of N forms per se.  相似文献   

13.
Simple compounds in soil such as organic acids, amino acids and monosaccharides are believed to be important in regulating many aspects of terrestrial ecosystem functioning (e.g. C cycling, nutrient acquisition). Understanding the fate and dynamics of these low molecular weight (MW) compounds is therefore essential for predicting ecosystem responses to disturbance. Our aim was to quantify the amounts of these compounds in two podzolic forest soil profiles (O, E, Bs and C horizons) and to quantify their contribution to total soil respiration. The total concentration of organic acids, amino acids and monosaccharides in soil solution comprised on average 15?±?10% of the total dissolved organic C (DOC), with declining concentrations in the deeper soil layers. Dissolved organic N (DON) was the dominant form of N in soil solution and free amino acids contributed to 34% of this pool. The mineralization behaviour of glucose and galactose was described by parabolic (Michaelis–Menten) type kinetics with V max and K M values in the range of <1–250 μmol kg?1 h?1 and 15–1,100 μM, respectively. Assuming that (1) microbially mediated substrate turnover follows Michaelis–Menten kinetics, and (2) steady state soil solution concentrations, we calculated the rate of CO2 efflux attributable to the mineralisation of the three classes of low MW compounds. Our results indicated that in the O horizon, the turnover of these substrates could comprise ~100% of the basal, heterotrophic, soil respiration. In contrast, in the deeper mineral soil <20% of total soil respiration could be attributable to the mineralization of these compounds. Our compound-specific approach has identified the main substrates contributing to soil respiration in forest topsoils. However, our results also suggest that soil respiration in subsoils may be attributable to compounds other than organic acids, amino acids and monosaccharides.  相似文献   

14.

Background

Inorganic fertilizer is one of the most important anthropogenic inputs which influences soil nutrient turnover in agricultural ecosystems. However, as the key process involved in the maintenance, transformation and stability of soil nitrogen (N), the incorporation and allocation of fertilizer N between different soil organic N (SON) fractions in a growing season remains largely unknown.

Methods

In this study, a field experiment was conducted in triplicate of micro-plots and a total of 200 kg N ha?1 (15?N-labeled (NH4)2SO4, 98 atom %) was applied as a basal dressing and two top dressings, at jointing and filling stages, respectively, to a maize crop during one growing season. The distribution and seasonal dynamics of fertilizer N in different SON fractions (i.e., amino acids, amino sugars, hydrolyzable ammonium N and acid insoluble-N) were measured by liquid/gas chromatography–mass spectrometry (LC/GC-MS) and element analysis-combustion-isotope ratio mass spectrometry (EA-C-IRMS) techniques. Path analysis was used to evaluate the transformation processes between organic N fractions derived from fertilizer and N supply strategy in soil-plant system.

Results

The accumulation of fertilizer-derived N in different organic fractions was season-specific. At jointing stage, preferential enrichment of 15?N was found in soil amino acids plus amino sugars, indicating the active biological immobilization of basal dressing fertilizer N. Nevertheless, there is still a small proportion of fertilizer N stabilized in the acid insoluble fraction. The accumulation of the residual fertilizer N in hydrolyzable ammonium N reached a maximum at filling stage and then declined significantly, implying the rapid release of the fertilizer N remained in mineral forms. The contents of amino acids changed slightly, but they played a very important role in mediating SON transformation.

Conclusion

The hydrolyzable ammonium N was a temporary pool for rapid fertilizer N retention and simultaneously was apt to release N for crop uptake in the current season. In contrast, the amino acids could serve as a transitional pool of available N in the soil-crop system, while the acid insoluble fraction was as a stable pool of fertilizer N. Importantly, there is an interim shift among different pools to maintain soil N turnover; hence N in the amino acid fraction mediates N supply and the depolymerization of SON constituents controls the proceeding of fertilizer N cycling in the soil-plant system.  相似文献   

15.
M. K. Sinha 《Plant and Soil》1972,37(2):265-271
Summary Post-incubation fractionation of soils incubated with C14-tagged oat roots under aerobic and anaerobic conditions and chromatographic separation of hydrolysates of different organic matter fractions indicated the incorporation of C14-labelled amino acids in soil organic matter. Anaerobic incubation leads to the formation of hydrolysable heavily C14-labelled organic substances in greater quantity. The amino acid composition of the different fractions revealed not a very significant qualitative difference. The significance and causes of stabilization of amino acids in soil organic matter are discussed.  相似文献   

16.
Characteristics of amino acid uptake in barley   总被引:2,自引:0,他引:2  
Plants have the ability to take up organic nitrogen (N) but this has not been thoroughly studied in agricultural plants. A critical question is whether agricultural plants can acquire amino acids in a soil ecosystem. The aim of this study was to characterize amino acid uptake capacity in barley (Hordeum vulgare L.) from a mixture of amino acids at concentrations relevant to field conditions. Amino acids in soil solution under barley were collected in microlysimeters. The recorded amino acid composition, 0–8.2 μM of l-Serine, l-Glutamic acid, Glycine, l-Arginine and l-Alanine, was then used as a template for uptake studies in hydroponically grown barley plants. Amino acid uptake during 2 h was studied at initial concentrations of 2–25 μM amino acids and recorded as amino acid disappearance from the incubation solution, analysed with HPLC. The uptake was verified in control experiments using several other techniques. Uptake of all five amino acids occurred at 2 μM and below. The concentration dependency of the uptake rate could be described by Michaelis–Menten kinetics. The affinity constant (K m) was in the range 19.6–33.2 μM. These K m values are comparable to reported values for soil micro-organisms.  相似文献   

17.
Studies in different ecosystems have shown that plants take up intact amino acids directly but little is known about the influence of free amino acid concentrations in the soil on this process. We investigated the effect of three different soil amino acid N concentrations (0.025, 0.13 and 2.5 μg N g?1 soil) on direct uptake of four dual labelled (15N, 13C) amino acids (glycine, tyrosine, lysine, valine) in a greenhouse experiment using Anthoxantum odoratum as a model plant.Our results revealed that 8–45% of applied 15N was incorporated into plant root and shoot tissue 48 h after labelling. Additional 13C enrichment showed that 2–70% of this incorporated 15N was taken up as intact amino acid. Total 15N uptake and 15N uptake as intact amino acids were significantly affected by soil amino acid N concentrations and significantly differed between the four amino acids tested.We found a positive effect of soil amino acid concentrations on uptake of mineralized 15N relative to amino acid concentrations for all amino acids which was presumably due to higher diffusion rates of mineralized tracer to the root surface. However, intact amino acid uptake relative to amino acid concentrations as well as the proportion of total 15N taken up directly decreased with increasing soil amino acid N concentrations for all amino acids, irrespective of their microbial degradability. This effect is most likely controlled by the mineral N concentration in soil and perhaps in plants which inhibits direct amino acids uptake.Overall, we conclude that plant internal regulation of amino acid uptake controlled by mineral N is the main mechanism determining direct uptake of amino acids and thus a lower contribution of intact amino acid uptake to the plants N nutrition has to be expected for higher amino acid concentrations accompanied by mineralization in soil.  相似文献   

18.
Studies on the decomposition of amino acids in soils   总被引:2,自引:0,他引:2  
Summary 1. Under soil-percolation conditions the decomposition of amino acids is entirely aerobic.2. Amino-acid decomposition proceeds under aerobic conditions without extra-cellular accumulation of appreciable concentrations of simple soluble organic compounds.3. During leucine decomposition 40 per cent of the leucine-carbon is converted into carbon dioxide while the remaining leucine is synthesised into cellular material. Any carbon dioxide evolved thereafter is due to oxidation of this synthesised cellular material.4. The micro-organisms induced in three different soils in response to leucine percolation had similar abilities in metabolizing different amino acids. The metabolizing abilities of micro-organisms induced in a garden soil in response to percolation withdl-alanine, ordl-aspartic acid, ordl-leucine ordl-phenylalanine have also been studied.5. Progressive drying of soil, stimulated by percolation with specific amino acids, has little effect on its immediate metabolising activity until a low soil-moisture content is reached and the soil particles change colour. At this point the micro-organisms produced by stimulation are irreversibly inactivated.6. The micro-organisms induced in soil/percolate systems in response to leucine percolation are adsorbed by different soils to different extents.  相似文献   

19.
The ability of indigenous Rhizobium leguminosarum and Rhizobium meliloti to use organic nutrients as growth substrates in soil was assessed by indirect bacteriophage analysis. A total of 17 organic compounds, including 9 carbohydrates, 3 organic acids, and 5 amino acids, were tested (1,000 μg g−1) in three soils with different cropping histories. Four additional soils were screened with a glucose amendment. Nutrient amendments stimulated growth of indigenous rhizobia, allowing subsequent replication of indigenous bacteriophages. Phage populations were enumerated by plating soil extracts on 19 R. leguminosarum and 9 R. meliloti indicator strains, including root nodule isolates from the soils assayed. On the basis of indirect phage analysis, all soils contained native rhizobia similar to one or more of the indicator strains, although not all indicator strains were detected in soil. All organic compounds stimulated growth of indigenous rhizobia, but the growth response varied for each rhizobial strain depending on the nutrient, the nutrient concentration, and the soil. Indigenous rhizobia readily utilized most organic compounds except phenylalanine, glycine, and aspartic acid. The ability of indigenous rhizobia to utilize a wide range of organic compounds as growth substrates in situ indicates their ability to successfully compete with other soil bacteria for nutrients in these soils.  相似文献   

20.
Summary Annual estimates of surface soil nitrogen transformations were determined using an in situ method in four different subarctic vegetation types within a watershed in southwestern Alaska. The net nitrogen mineralization estimates were 22.5, 0.5, 4.7, and 2.7 kg-N ha-1 yr-1 for the alder, dry tundra, moist tundra, and white spruce sites, respectively. Only the soil from the alder site showed net nitrification (about 10 kg-N ha-1 yr-1). Annual inogranic nitrogen flux from the overlying organic layer to the mineral soil was almost seven times greater than net N production in the surface mineral soil in the alder site, indicating that the alder forest floor is potentially a substantial source for plant-available N. Rates of mobilization of N from the surface organic layers of the other sites were similar to net N production rates in surface mineral soils. In situ rates of N transformations showed a similar trend among sites as did laboratory estimates conducted in a previous study, suggesting a strong substrate control of N transformations in these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号