首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease (MJD) are neurodegenerative disorders caused by CAG trinucleotide repeat expansions. An inverse correlation of age at onset with the length of the expanded CAG trinucleotide repeats has been demonstrated, and the intergenerational instability of the length of the CAG trinucleotide repeats, which is more prominent in paternal than in maternal transmissions, has been shown to underlie the basic mechanisms of anticipation in DRPLA and MJD. Our previous observations on DRPLA and MJD pedigrees, as well as a review of the literature, have suggested that the numbers of affected offspring exceed those of unaffected offspring, which is difficult to explain by the Mendelian principle of random segregation of alleles. In the present study, we analyzed the segregation patterns in 211 transmissions in 24 DRPLA pedigrees and 80 transmissions in 7 MJD pedigrees, with the diagnoses confirmed by molecular testing. Significant distortions in favor of transmission of the mutant alleles were found in male meiosis, where the mutant alleles were transmitted to 62% of all offspring in DRPLA (chi2 = 7.69; P<.01) and 73% in MJD (chi2 = 6.82; P<.01). The results were consistent with meiotic drive in DRPLA and MJD. Since more prominent meiotic instability of the length of the CAG trinucleotide repeats is observed in male meiosis than in female meiosis and meiotic drive is observed only in male meiosis, these results raise the possibility that a common molecular mechanism underlies the meiotic drive and the meiotic instability in male meiosis.  相似文献   

2.
Hereditary cerebellar ataxias, including spinocerebellar ataxia type I (SCA1), dentato-rubro-pallidoluysian atrophy (DRPLA), and Machado-Joseph disease (MJD), have been associated with unstable CAG repeats. The length of the CAG repeat is a major factor in determining the age of onset of these diseases. In electrophoresis through acrylamide gels with formamide, the CAG repeat length following the polymerase chain reaction (PCR) coincides with the sequence-determined repeat length after subcloning. However, without formamide, PCR products with long CAG repeats appear 1–4 repeats shorter than when electrophoresed with formamide, and the repeat lengths are variable. In addition, the larger the CAG repeats are, the more difficult are the PCR reactions. A mixture containing thermostable Taq and Pwo DNA polymerases (so-called “long PCR”) is much more sensitive than that with Taq polymerase alone in detecting expanded CAG repeats. Therefore, highly denaturing conditions, especially formamide gel electrophoresis, and the “long PCR” protocol should be used to evaluate the exact CAG repeat length. We have used these principles to detect unstable CAG repeats. The normal ranges are 14–34 repeats for MJD, 6–31 repeats for DRPLA, and 21–32 repeats for SCA1. Received: 29 August 1995 / Revised: 12 October 1995  相似文献   

3.
4.
X连锁脊延髓肌萎缩症(SBMA)或肯尼迪病是一种成年人发病的神经变性疾病,以肌无力与慢性、进行性肌萎缩为特征. 通过PCR片段测序和基因分型法准确检测雄激素受体(AR)基因CAG复制数目,兄弟俩(来自同一个中国家庭)被确诊为隐性遗传性SBMA. 为了得到该中国家庭SMBA家系人员AR基因的CAG复制数目,我们采用了PCR片段测序和基因分型两种方法. 在该SMBA家系中有两个已发病的成年男性、未发病的年轻男性,及女性基因携带者. 两个已发病男性患者AR基因中CAG三核苷酸串重复数目分别是48和45. 以前的研究表明特定三核苷酸串重复数目的扩增可导致人类遗传性神经障碍疾病发病。我们的研究结果完全支持这一观点,SMBA中国家系的三核苷酸CAG拷贝数目检测结果表明,AR基因CAG扩增数目与SMBA发病相关. 关键词雄性激素受体; CAG多重三核苷酸重复; 肯尼迪病; 脊延髓肌萎缩症; X连锁  相似文献   

5.
The factors influencing the tissue-specific pattern of somatic mosaicism in CAG-repeat diseases have not yet been fully resolved. We performed a detailed analysis of the degree of somatic mosaicism in various tissues from 20 patients with spinal and bulbar muscular atrophy (SBMA), including 4 who were deceased. The most outstanding feature was the prominent somatic mosaicism observed in the cardiac and skeletal muscles, composed predominantly of postmitotic cells, and in the skin, prostate, and testis. The CNS tissues, liver, and spleen showed the least mosaicism. The tissue distribution of somatic mosaicism in patients with SBMA was markedly different from that in patients with Huntington disease (HD) and from that in patients with dentatorubral-pallidoluysian atrophy (DRPLA). The degree of somatic mosaicism correlated with the CAG-repeat number but not with age at examination. Furthermore, tissues with a higher mosaicism level corresponded well to those with a higher expression level of androgen receptor protein. The tissue-specific pattern of somatic mosaicism related not only to cell composition with different cell turnover rates but to repeat size and gene expression levels, and postnatal cell division is unlikely to be a major cause of somatic mosaicism probably because of the relative stability of CAG repeat in SBMA.  相似文献   

6.
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disease characterized by various combinations of ataxia, choreoathetosis, myoclonus, epilepsy and dementia as well as various ages of onset. We have identified a specific unstable trinucleotide repeat expansion in a gene on the short arm of chromosome 12 as the pathogenic mutation for DRPLA. We investigated how the degree of the expansion of the CAG repeat affects the clinical manifestations of DRPLA. The sizes of the expanded alleles were well correlated with the ages of onset (r = −0.6955, P < 0.001). Patients with progressive myoclonus epilepsy (PME) phenotype had larger expansions (62–79 repeats) and earlier ages of onset (onset before age 20). Furthermore, most of the patients with PME phenotype inherited their expanded alleles from their affected fathers. On the other hand, patients with non-PME phenotype showed later ages of onset (onset after age 20) and smaller expansions (54–67 repeats). When ages of onset of each clinical symptom are compared with sizes of the CAG repeat, there is again a remarkably high correlation of the sizes of CAG repeat with each of the clinical symptoms. Thus the wide variation in clinical manifestations of DRPLA can now be clearly explained based on the degree of CAG repeat expansion, which strongly indicates that the expanded alleles are intimately involved in the neuronal degeneration in dentatofugal and pallidofugal systems.  相似文献   

7.
The mutation responsible for Machado-Joseph disease (MJD) has been identified as an expansion of a CAG trinucleotide repeat in a novel gene on chromosome 14q32.1. The CAG repeat tract is followed by C or G, and alleles are thereby divided into two types on the basis of molecular configuration, (CAG)nC and (CAG)nG. We have studied the relationship between the repeat length and the configuration in 38 patients from 28 Japanese families with MJD, and 31 unrelated normal Japanese subjects. The CAG repeat length in 100 normal alleles ranged from 13 to 37 repeats, while 38 MJD patients had one expanded allele with 64 to 84 repeats. Surprisingly, the expanded alleles had exclusively the (CAG)nC configuration, while both (CAG)nC and (CAG)nG were seen in normal alleles from MJD and control subjects. Furthermore, in normal alleles, the CAG repeat tract was significantly longer in (CAG)nC than in (CAG)nG. These findings suggest that the (CAG)nC configuration is related to repeat instability of the MJD gene. Received: 23 April 1996 / Revised: 24 June 1996  相似文献   

8.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.  相似文献   

9.
Dentatorubral and pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder with expansion of trinucleotide CAG repeats in the coding region of the gene. Expansion of the repeat tract beyond the normal range produces gene products with extended polyglutamine tracts. In this study, we analyzed the distribution of the CAG repeats in the DRPLA alleles in a normal Taiwanese population. We observed 15 different alleles and found that the range of the CAG repeat number was from 7-21. The most frequent allele contained 15 CAG repeats that represented 20% of the total analyzed alleles, followed by the 17 repeats (15.8%). The heterozygosity rate of this locus was 88%. Twelve parents-to-children transmissions of the DRPLA alleles in a Machado-Joseph disease family appeared to be normal without any alteration of the CAG repeat numbers. Phenotypes of DRPLA overlapped those of autosomal dominant cerebellar ataxia (ADCA). In order to identify DRPLA patients in Taiwan, we screened six autosomal dominant cerebellar ataxia patients without expansion in known spinocerebellar ataxia genes. All six patients had the repeat numbers within the normal range; thus, the possibility of DRPLA could be excluded.  相似文献   

10.
11.
Spinobulbar muscular atrophy (SBMA) is an X-linked form of motor neuron disease characterized by progressive atrophy of the muscles, dysphagia, dysarthria and mild androgen insensitivity. SBMA is caused by CAG repeat expansion in the androgen receptor gene. CAG repeat polymorphism was analysed in a Polish control group (n = 150) and patients suspected of SBMA (n = 60). Normal and abnormal ranges of CAG repeats were established in the control group and in 21 patients whose clinical diagnosis of SBMA was molecularly confirmed. The ranges are similar to those reported for other populations.  相似文献   

12.
Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/ MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.  相似文献   

13.
14.
The autosomal dominant late onset spinocerebellar ataxias (SCAs) are genetically heterogeneous. Three genes, SCA1 on 6p, SCA2 on 12q and MJD1 on 14q, have been isolated for SCA1, SCA2 and Machado-Joseph disease (MJD), respectively. In these three autosomal dominant disorders the mutation is an expanded CAG repeat. Evidence for heterogeneity in families not linked to the SCA1, SCA2 and MJD loci is provided by the mapping of SCA loci to chromosomes 16q, 11cen and 3p. A total of 14 South African kindreds and 22 sporadic individuals with SCA were investigated for the expanded SCA1 and MJD repeats. None of the families nor the sporadic individuals showed expansion of the MJD repeat. Expanded SCA1 and CAG repeats were found to cosegregate with the disorder in six of the families tested and were also observed in one sporadic individual with a negative family history of SCA. The use of the microsatellite markers D6S260, D6S89 and D6S274 provided evidence that the expanded SCA1 repeats segregated with three distinct haplotypes in the six families. Use of the highly polymorphic tightly linked microsatellite markers is still important as this stage, particularly where this coincides with the possibility of a homozygous genotype with the trinucleotide repeat marker. Importantly, our molecular findings indicate: (1) an absence of MJD expanded repeats underlying SCA; (2) the major disease in this group is due to mutations in the SCA1 gene; and (3) the familial disorder in the majority population group (i.e. mixed ancestry) in the Western Cape region of South Africa is most likely to be the result of two distinct founder events. Received: 4 November 1996 / Accepted: 6 February 1997  相似文献   

15.
Neurodegenerative disorders, including spinocerebellar ataxias (SCA), Huntington disease (HD) and dentatorubral-pallidoluysian atrophy (DRPLA), are associated with unstable CAG repeats. To investigate the mitotic stability of the repetitive element in the genes for SCA1, SCA3, HD, and DRPLA we extracted DNA from up to 13 tissue samples from four deceased individuals with progressive neurological disorders and neuropathological signs. Due to the formalin fixation of some tissues the genomic DNA was highly degraded and unsuitable for amplification of fragments longer than 150 bp. After size selection and primer extension preamplification, specific analyses could be performed even for expanded alleles. In all four patients the SCA1 mutation could be demonstrated, in one case with remarkable somatic heterogeneity of the elongated allele, whereas alleles of the normal range were stable in all tissues examined. Received: 3 February 1997 / Accepted: 9 April 1997  相似文献   

16.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

17.
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats.  相似文献   

18.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

19.
20.
Cell death in polyglutamine diseases   总被引:11,自引:0,他引:11  
An increasing number of inherited neurodegenerative diseases are known to be caused by trinucleotide repeat expansions in the respective genes. At least nine disorders result from a CAG trinucleotide repeat expansion which is translated into a polyglutamine stretch in the respective proteins: Huntington's disease (HD), dentatorubral pallidolysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and several of the spinocerebellar ataxias (SCA1, 2, 3, 6, 7 and 12). Although the molecular steps leading to the specific neuropathology of each disease are unknown and are still under intensive investigation, there is increasing evidence that some CAG repeat disorders involve the induction of apoptotic mechanisms. This review summarizes the clinical and genetic features of each CAG repeat disorder and focuses on the common mechanistic steps involved in the disease progression of these so-called polyglutamine diseases. Among the common molecular features the formation of intranuclear inclusions, the recruitment of interacting polyglutamine-containing proteins, the involvement of the proteasome and molecular chaperones, and the activation of caspases are discussed with regard to their potential implication for the induction of cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号