首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The thermal responses of cicadas inhabiting the Mediterranean ecosystems in Europe, North America, South Africa, and Australia are investigated. A total of 37 species and two subspecies from 17 genera representing eight tribes and three subfamilies of cicadas are investigated. The analysis includes species that are restricted to the Mediterranean ecosystem as well as those which also inhabit additional environments. The data suggest that cicadas adapt to the climate type regardless of particular types of plants within the various Mediterranean communities. Similarly, cicada thermal responses are independent of body size or taxonomic affinities. There is a wider range of body temperatures for the maximum voluntary tolerance temperature than for heat torpor or minimum flight temperatures. This diversity seems to be determined by the subdivision of the habitat used and the behavior of the species. All species possess relatively elevated heat torpor temperatures adapting to the general thermal characteristics of the Mediterranean ecosystem. The data suggest that cicadas adapt to the Mediterranean climate type regardless of the diversity of particular types of plants within the various communities, of body size or of taxonomic position.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Molecular and cell biology of arbuscular mycorrhizal symbiosis   总被引:15,自引:0,他引:15  
Hause B  Fester T 《Planta》2005,221(2):184-196
The roots of most extant plants are able to become engaged in an interaction with a small group of fungi of the fungal order Glomales (Glomeromycota). This interaction—arbuscular mycorrhizal (AM) symbiosis—is the evolutionary precursor of most other mutualistic root-microbe associations. The molecular analysis of this interaction can elucidate basic principles regarding such associations. This review summarizes our present knowledge about cellular and molecular aspects of AM. Emphasis is placed on morphological changes in colonized cells, transfer of nutrients between both interacting partners, and plant defence responses. Similarities to and differences from other associations of plant and microorganisms are highlighted regarding defence reactions and signal perception.  相似文献   

15.
16.
17.
18.
The success of the 1st International Symposium on Sponge Microbiology reflects the growing interest of the scientific community in this new and emerging field. Research themes of the symposium included symbiont diversity, physiology and function, secondary metabolites, metagenomics, single-cell genomics and other -omics approaches, sponge–symbiont interactions, sponge diseases, environmental stress, and many more. This article summarizes the major developments in the field and identifies future foci for research.  相似文献   

19.
20.
Abiotic stresses (such as salinity, drought, cold, heat, mineral deficiency and metals/metalloids) have become major threats to the global agricultural production. These stresses in isolation and/or combination control plant growth, development and productivity by causing physiological disorders, ion toxicity, and hormonal and nutritional imbalances. Some soil microorganisms like arbuscular mycorhizal fungi (AMF) inhabit the rhizosphere and develop a symbiotic relationship with the roots of most plant species. AMF can significantly improve resistance of host plants to varied biotic and abiotic stresses. Taking into account recent literature, this paper: (a) overviews major abiotic stresses and introduces the arbuscular mycorrhizae symbiosis (b) appraises the role and underlying major mechanisms of AMF in plant tolerance to major abiotic stresses including salinity, drought, temperature regimes (cold and heat), nutrient-deficiency, and metal/metalloids; (c) discusses major molecular mechanisms potentially involved in AMF-mediated plant-abiotic stress tolerance; and finally (d) highlights major aspects for future work in the current direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号