首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Mediterranean dry grasslands, grazing by domestic animals is an important agricultural activity on dry grasslands. Several bird species occur in these grazed habitats and are now experiencing a near continuous decline. We investigated the impact of livestock grazing on the threatened little bustard (Tetrax tetrax L.). The study was conducted at the NATURA 2000 Site/Important Bird Area of Cabrela, Portugal. Our main goals were to investigate responses of little bustard territorial males and breeding females to different livestock management practices, namely pasture types, stocking rates and sward structure. Bird distribution was surveyed using car and foot surveys. Data on grazing was supplied by land managers every 10 days from February to June through field interviews. Generalised additive models and model averaging were used to compute predictive models. Results indicate that higher probabilities of occurrence were found in long-term pastures and under light-moderate grazing conditions (stocking rates around 0.4 LU/ha). Conversely, lower probabilities of occurrence were found in ungrazed or heavy grazed fields. Males occurred mostly in large fields, but this variable seemed to be less important for females. On the other hand, green plant cover and the vegetation height were good predictors for the occurrence of females but not for males. Females used mostly pastures with vegetation height around 20–25 cm. Our results suggest that grazing management plans that aim to conserve little bustard populations should consider (1) the maintenance of the larger long-term pastures and (2) the use of light-moderate stocking rates (0.2–0.6 LU/ha).  相似文献   

2.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

3.
We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers’ residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers’ residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m2 along a transect and classified the contents by species. We observed 15.5–19.7 species per 0.01 m2, which is high richness per 0.01 m2 on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.  相似文献   

4.
Patch-burn grazing is a management framework designed to promote heterogeneity in grasslands, creating more diverse grassland structure to accommodate the habitat requirements of many grassland species, particularly grassland birds. Published studies on the effects of patch-burn grazing on passerines have been conducted on relatively large (430–980 ha pastures), contiguous grasslands, and only 1 of these studies has investigated the reproductive success of grassland birds. We assessed the effects of the patch-burn grazing and a more traditional treatment on the nesting ecology of grasshopper sparrows (Ammodramus savannarum) in small (<37 ha pastures) grasslands located in southern Iowa from May to August of 2008 and 2009. The study pastures were grazed from May to September and prescribed burns were conducted in the spring. We investigated the effects of treatments on clutch size and modeled grasshopper sparrow nest survival as a function of multiple biological and ecological factors. We found no difference in clutch size between treatments; however, we did find a reduction in clutch size for nests that were parasitized by brown-headed cowbirds (Molothrus ater). Constant daily survival rates were greater in patch-burn grazed pastures than in grazed-and-burned pastures (patch-burn grazed rate and grazed-and-burned rate ). Competitive survival models included year, stage of nest, nest age, and cool-season grass (csg) abundance within 5 m of the nest. Overall, csg abundance had the greatest effect on survival and had a negative influence. Although survival rates were highest in patch-burn grazed pastures, multiple factors influenced grasshopper sparrow survival. Nest survival rates for both treatments were relatively low, and variables other than treatment were more instrumental in predicting grasshopper sparrow survival. We recommend decreasing overall vegetation cover if increasing nesting habitat for grasshopper sparrows is a management goal. In addition, we recommend further investigation of heterogeneity management in fragmented landscapes to better understand how it affects biodiversity in relatively small management units that typify grassland habitats in the Midwest. © 2011 The Wildlife Society.  相似文献   

5.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

6.
This paper reports the very first data on the denning habits of the little-studied Molina’s hog-nosed skunk (Conepatus chinga). We identified and characterized 240 (males: n = 92, females: n = 148) den sites used by nine radio-tracked skunks from November 2002 to October 2003 and from December 2005 to October 2007. Most dens were found in underground burrows and we found no variation in dimensions of den entrances across seasons. On average, 24.1% of the den sites were reused by C. chinga. Den sites were not homogeneously distributed within an animal's home range, being the density in core areas greater than in proximity to the borders of home ranges. C. chinga selected specific habitat characteristics for their den sites, such as high shrub and grass cover. Accordingly, the habitats preferred by skunks were native grasslands and pastures. Also, C. chinga preferred den sites located close to fences, roads, and grass patches. We argue that these preferences for den sites may provide two, not mutually exclusive, advantages: access to consistent and predictable sources of food, and protection from predators. Our results suggest that availability of semi-natural grassland and pasture areas may favor the conservation of C. chinga in the human-modified landscapes of the Pampas.  相似文献   

7.
Species in a highly fragmented environment, such as the intensively used agricultural landscapes of Europe, are expected to be in danger of extinction. We hypothesize according to Kisdi’s theory (Am Nat 159:579–596, 2002) that species in fragmented landscapes with isolated habitats in general tend to possess low dispersal. In order to verify this hypothesis we studied the movement patterns of Stethophyma grossum, a hygrophilous species of wetlands, by mark–release–recapture techniques in a landscape with scattered suitable habitats over 3 years. The study focused on the major population in this landscape (site #1) as dispersal behaviour was assumed to be greatest. Actually, marked individuals of S. grossum were never found in any further suitable habitats in close vicinity to site #1. Despite that the peatland meadow of study site #1 was all over covered with homogenous vegetation only 6% (1.8 ha) of the whole area (30 ha) were occupied by S. grossum. The mean recapture rate over 3 years amounted to 39% with no significant differences between males and females. Both covered little distances within their mean range size of 1.8 ha; the median distances were 36.91 m for males and 26.65 m for females. We confirm the hypothesis that sub-populations of species in longstanding naturally isolated habitats, which habitat conditions have been stable; evolved low dispersal with little movements which are routine movements to find mating partners or food.  相似文献   

8.
Semi-natural pastures have rich plant and animal communities of high conservation value which depend on extensive management. As the area of such land decreases, abandoned semi-natural grasslands have been restored to re-establish biodiversity. Restoration schemes, which include thinning of woody plants and reintroduction of grazing, are mainly designed according to the responses of well-studied groups (such as vascular plants and birds). Weevils (Curculionidae) are a very diverse phytophagous beetle family. Here, we evaluated the restoration success of pastures for weevils (Curculionidae), by comparing their species diversity in abandoned, restored, and continuously grazed semi-natural pastures on 24 sites in central Sweden. Weevils were sampled by sweep-netting. We recorded 3019 weevil individuals belonging to 104 species. There was no statistically significant difference in species numbers between the pasture management treatments. However, weevil species composition of abandoned pastures differed from those in restored and continuously managed pastures, but there was no significant difference in community composition between restored and continuously grazed pastures. The abandoned sites tended to be dominated by polyphagous species, whereas the grazed sites contained more monophagous and oligophagous species. The number of weevil species was positively related to understory vegetation height and connectivity to other semi-natural grasslands and negatively related to the cover of trees and shrubs in the pastures. We conclude that restoration of abandoned semi-natural pastures is a good approach to restore weevil communities. To maintain a species rich weevil community, pastures should be managed to be relatively open, but still have patches of tall field-layer vegetation. Restoration and conservation measures should primarily be targeted on regions and landscapes where a high proportion of semi-natural grassland still remains.  相似文献   

9.
Grazing management recommendations often sacrifice the intrinsic heterogeneity of grasslands by prescribing uniform grazing distributions through smaller pastures, increased stocking densities, and reduced grazing periods. The lack of patch-burn grazing in semi-arid landscapes of the western Great Plains in North America requires alternative grazing management strategies to create and maintain heterogeneity of habitat structure (e.g., animal unit distribution, pasture configuration), but knowledge of their effects on grassland fauna is limited. The lesser prairie-chicken (Tympanuchus pallidicinctus), an imperiled, grassland-obligate, native to the southern Great Plains, is an excellent candidate for investigating effects of heterogeneity-based grazing management strategies because it requires diverse microhabitats among life-history stages in a semi-arid landscape. We evaluated influences of heterogeneity-based grazing management strategies on vegetation structure, habitat selection, and nest and adult survival of lesser prairie-chickens in western Kansas, USA. We captured and monitored 116 female lesser prairie-chickens marked with very high frequency (VHF) or global positioning system (GPS) transmitters and collected landscape-scale vegetation and grazing data during 2013–2015. Vegetation structure heterogeneity increased at stocking densities ≤0.26 animal units/ha, where use by nonbreeding female lesser prairie-chickens also increased. Probability of use for nonbreeding lesser prairie-chickens peaked at values of cattle forage use values near 37% and steadily decreased with use ≥40%. Probability of use was positively affected by increasing pasture area. A quadratic relationship existed between growing season deferment and probability of use. We found that 70% of nests were located in grazing units in which grazing pressure was <0.8 animal unit months/ha. Daily nest survival was negatively correlated with grazing pressure. We found no relationship between adult survival and grazing management strategies. Conservation in grasslands expressing flora community composition appropriate for lesser prairie-chickens can maintain appropriate habitat structure heterogeneity through the use of low to moderate stocking densities (<0.26 animal units/ha), greater pasture areas, and site-appropriate deferment periods. Alternative grazing management strategies (e.g., rest-rotation, season-long rest) may be appropriate in grasslands requiring greater heterogeneity or during intensive drought. Grazing management favoring habitat heterogeneity instead of uniform grazing distributions will likely be more conducive for preserving lesser prairie-chicken populations and grassland biodiversity. © 2021 The Wildlife Society.  相似文献   

10.
The retention of natural habitat corridors is a useful and practical conservation tool that can attenuate the effects of habitat loss and fragmentation on wildlife. Linear structures may contribute to the conservation of biodiversity by providing additional habitats for small fauna living in highly modified environments. We assessed the importance of road verges as refuge areas for small mammals, in highly intensified grazed pastures, within a Mediterranean landscape and compared the role of road verges as refuges with that of riparian galleries, which have been described as important shelter locations for small fauna. For this purpose, a small mammal trapping study was undertaken on two road verges and beside two small streams in southern Portugal. We captured 457 individuals of five different species, with Mus spretus the most common species captured, followed by Crocidura russula. Captures were 4.6-fold higher immediately beside both roads and streams than 12 m away in the surrounding matrix. Individuals captured in the matrix presented a smaller body size and lower body condition, suggesting that this suboptimal habitat is occupied mainly by subadults. M. spretus was 46% more abundant by roads than by streams, while C. russula was present in similar numbers in both habitats. M. spretus individuals were larger near streams but exhibited no difference in body condition between habitats. C. russula had a better body condition and slightly higher body lengths at roadsides. Our results show that roadside verges in intensively grazed Mediterranean landscapes act as important refuges and constitute equally vital habitats for small mammals as do riparian vegetation strips in landscapes where other suitable habitats are scarce.  相似文献   

11.
Native bird breeding in a chronosequence of revegetated sites   总被引:2,自引:0,他引:2  
Restoration of degraded landscapes through replantings of native vegetation has been proceeding in response to habitat loss and fragmentation and plummeting biodiversity. Little is known about whether the investments in ecological restoration have resulted in biodiversity benefits. We evaluated the potential of restored sites to support populations by assessing bird breeding activity. We surveyed 21 revegetated sites of various ages (9–111 years) in the box–ironbark region of Victoria, Australia. Sites differed in landscape context, patch features and in-site characteristics. The latter, including whether sites were grazed, amounts of fallen timber and numbers of remnant trees, were most important in affecting overall bird breeding activity. Patch-configuration (e.g., shape, area) was of secondary importance. Landscape context appeared to have little effect on bird breeding except for one species. While these results suggest that in-site habitat structure is the predominant driver, we caution against dismissing the importance of patch characteristics and landscape context for two reasons. First, the available sites covered a relatively small range of areas (<54 ha), and we could not provide a broad range of landscape-contextual contrasts given that we could only use existing plantings. Second, much of the breeding activity was by bird species known to be tolerant of smaller woodland areas or of the open countryside. We show that there is very little breeding activity in replantings by species that have declined dramatically in rank abundance between large ‘reference’ areas and fragmented landscapes. It seems likely that most replantings provide habitat configurations unsuited for dealing with declines of species most vulnerable to habitat loss and fragmentation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Agricultural landscapes comprise much of the earth's terrestrial surface. However, knowledge about how animals use and move through these landscapes is limited, especially for small and cryptic taxa, such as reptiles and amphibians. We aimed to understand the influence of land use on reptile and frog movement in a fine‐grained grazing landscape. We surveyed reptiles and frogs using pitfall and funnel traps in transects located in five land use types: 1) woodland remnants, 2) grazed pastures, 3) coarse woody debris added to grazed pastures, 4) fences in grazed pastures and 5) linear plantings within grazed pastures. We found that the different land cover types influenced the types and distances moved by different species and groups of species. Reptiles moved both within, and out of, grazed paddocks more than they did in woodland remnants. In contrast, frogs exhibited varying movement behaviours. The smooth toadlet (Uperoleia laevigata) moved more often and longer distances within remnants than within paddocks. The spotted marsh frog (Limnodynastes tasmaniensis) moved out of grazed pastures more than out of pastures with coarse woody debris added or fences and were never recaptured in plantings. We found that most recaptured reptiles and frogs (76.3%) did not move between trapping arrays, which added to evidence that they perceived most of the land cover types as habitat. We suggest that even simple fences may provide conduits for movement in the agricultural landscape for frogs. Otherwise, most reptile and frog species used all land cover types as habitat, though of varying quality. Reptiles appeared to perceive the woodland remnants as the highest quality habitat. This landscape is fine‐grained which may facilitate movement and persistence due to high heterogeneity in vegetation cover over short distances. Therefore, intensification and increasing the size of human land use may have negative impacts on these taxa.  相似文献   

13.
Agricultural intensification typically leads to changes in bird diversity and community composition, with fewer species and foraging guilds present in more intensively managed parts of the landscape. In this study, we compare bird communities in small (2–32 ha) brigalow (Acacia harpophylla) remnants with those in adjacent uncultivated grassland, previously cultivated grassland and current cropland, to determine the contribution of different land uses to bird diversity in the agricultural landscape. Twenty remnant brigalow patches and adjacent agricultural (‘matrix’) areas in southern inland Queensland, Australia were sampled for bird composition and habitat characteristics. The richness, abundance and diversity of birds were all significantly higher in brigalow remnants than in the adjacent matrix of cropping and grassland. Within the matrix, species richness and diversity were higher in uncultivated grasslands than in current cultivation or previously cultivated grasslands. Forty-four percent of bird species were recorded only in brigalow remnants and 78% of species were recorded in brigalow and at least one other land management category. Despite high levels of landscape fragmentation and modification, small patches of remnant brigalow vegetation provide important habitat for a unique and diverse assemblage of native birds. The less intensively managed components of the agricultural matrix also support diverse bird assemblages and thus, may be important for local and regional biodiversity conservation.  相似文献   

14.
Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0–50 cm were highest under UG (13.3 kg C m−2 and 1.69 kg N m−2) and lowest under HG (9.8 kg C m−2 and 1.22 kg N m−2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm−2) than under other treatments (725–731 kg N hm−2) in the 0–50 cm. Our results indicate that the pasture management of “take half-leave half” has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region.  相似文献   

15.
Strong topographic variation interacting with low stature alpine vegetation creates a multitude of micro-habitats poorly represented by common 2 m above the ground meteorological measurements (weather station data). However, the extent to which the actual habitat temperatures in alpine landscapes deviate from meteorological data at different spatial scales has rarely been quantified. In this study, we assessed thermal surface and soil conditions across topographically rich alpine landscapes by thermal imagery and miniature data loggers from regional (2-km2) to plot (1-m2) scale. The data were used to quantify the effects of spatial sampling resolution on current micro-habitat distributions and habitat loss due to climate warming scenarios. Soil temperatures showed substantial variation among slopes (2–3 K) dependent on slope exposure, within slopes (3–4 K) due to micro-topography and within 1-m2 plots (1 K) as a result of plant cover effects. A reduction of spatial sampling resolution from 1 × 1 m to 100 × 100 m leads to an underestimation of current habitat diversity by 25% and predicts a six-times higher habitat loss in a 2-K warming scenario. Our results demonstrate that weather station data are unable to reflect the complex thermal patterns of aerodynamically decoupled alpine vegetation at the investigated scales. Thus, the use of interpolated weather station data to describe alpine life conditions without considering the micro-topographically induced thermal mosaic might lead to misinterpretation and inaccurate prediction.  相似文献   

16.
Across Western Siberia, land use has changed substantially since the collapse of the Soviet Union in 1991: large cropland areas were abandoned and livestock numbers declined. In recent years these trends have partly been reversed, and an intensification of agricultural management has been observed that is still ongoing. We evaluated the impact of land use, as well as effects of landscape patterns and vegetation structure on Orthoptera communities and discuss them as drivers of community composition, species richness and abundance. We sampled Orthoptera using a box-quadrat on ancient grassland, ex-arable grassland (both including different management types: unmanaged, grazed and mown) and cereal fields. Landscape heterogeneity and composition strongly affected species richness and abundance of Orthoptera. Both were higher in grassland than in cropland, but did not differ significantly between ex-arable and ancient grasslands or different management practices. An Indicator Species Analysis revealed differentiation of Orthoptera communities between all management types. On croplands, the number of adult individuals and nymphs was influenced by the proportion of grassland in the surrounding landscape and tillage practices. Conservation tillage is most likely the key factor allowing Orthoptera to reproduce on croplands. After up to 24 years of succession, Orthoptera communities of ex-arable grasslands can be considered as completely recovered, as differences to ancient grasslands were minimal. Besides the continuation of low-intensity management, conservation strategies for this region should consider landscape composition and support habitat heterogeneity like ecotones with hemi-boreal forests in grassland-dominated landscapes.  相似文献   

17.
Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epiphytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean = 0.166) and significant but lower relatedness among populations within a pasture (mean = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids.  相似文献   

18.
To investigate recent changes in the floristic composition and nature conservation value of nutrient-poor, semi-natural grasslands of the Swiss Alps, we resurveyed 151 phytosociological relevés in four regions, originally recorded between 1975 and 1985. In the original surveys, the mean number of plant species per plot (25–100 m2) ranged from 47.1 to 58.1 according to region. The flora included a total of 18 species that are protected in Switzerland and a high proportion of habitat specialists of nutrient-poor grasslands (NPG-species). In the second survey, conducted between 2002 and 2004, both mean species number per plot (−3.2 to +11.4) and species evenness (−0.05 to +0.07) were higher in most regions. However, the data revealed clear shifts in community composition, with a higher proportion of nutrient-demanding species (mean nutrient indicator value increased by +0.07 to +0.24 units) and a lower proportion per plot of NPG-species (−3.6 to −11.6%). These changes were greatest in pastures, and in meadows converted to sheep pastures, while the NPG-species were maintained in unfertilized meadows that were managed as ecological compensation areas. To prevent continuing decline in the conservation value of these grasslands, it is important to support low-intensity management, especially mowing, and to prevent further eutrophication.  相似文献   

19.
1. The Qilian Mountains represent one of the key livestock‐raising grasslands in China. The two main herbivore species raised in this area – yaks and sheep – are of critical economical value. Grasshoppers compete with these animals for available nutrients, creating multifaceted relationships between livestock, grasshoppers and plants. A clear understanding of such relationships is lacking and is urgently needed to guide conservation efforts. 2. This study aims to document the effects of yak and sheep grazing on grasshopper assemblages and to elucidate the underlying mechanisms of such effects. 3. It is shown here that yaks and sheep impact grasshopper assemblages differently. Grasshopper assemblages exhibited lower density, biodiversity, richness, and evenness of distribution in yak‐grazed pastures than in grazing‐free grasslands. Sheep‐grazed pastures exhibited a dramatically divergent picture, with elevated density, biodiversity and richness, and a slightly decreased evenness of distribution. Grasshoppers were generally larger in grazed pastures than in grazing‐free grasslands, especially in yak‐grazed plots. 4. The present study suggests that differences between yak and sheep pastures in plant assemblage structure and plant traits are probably the underlying forces driving the differences in grasshopper assemblage structure and grasshopper traits, respectively. 5. The study shows that the grasshopper habitat indicator species differ between yak and sheep pastures, raising the possibility that such indicators can be used to monitor grassland usage and degradation in the Qilian Mountains. 6. These results provide novel insights into the dynamic interactions of common domesticated herbivore species, grasshoppers and plants in Qilian Mountains, which augment current knowledge and may ultimately lead to better conservation practices.  相似文献   

20.
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land‐use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land‐use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land‐use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land‐use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region‐specific trade positions. In regions with a high involvement in international trade, area‐based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号