首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty novel prodrugs and aza-analogues of 3,5-bis(4-amidinophenyl)isoxazole and its derivatives were prepared. Eighteen of the 24 aza-analogues exhibited IC50 values below 25 nM against Trypanosoma brucei rhodesiense or Plasmodium falciparum. Six compounds had antitrypanosomal IC50 values below 10 nM. Twelve analogues showed similar antiplasmodial activities, including three with sub-nanomolar potencies. Forty-four diamidines (including 16 aza-analogues) and the 26 prodrugs were evaluated for efficacy in mice infected with T. b. rhodesiense STIB900. Six diamidines cured 4/4 mice at daily 5 mg/kg intraperitoneal doses for 4 days, giving results far superior to pentamidine and furamidine. One prodrug attained 3/4 cures at daily 25 mg/kg oral doses for 4 days.  相似文献   

2.
3.
The X-ray diffraction analysis of N-o-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (1), N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, N-p-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, and their N-acetyl derivatives was performed. The sugar moieties always adopt 4C1 conformations, however, due to crystal packing forces they are always slightly distorted. It was found that except N-acetyl, N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (5), none of the glucopyranosylamines studied in this paper form strong hydrogen bonds in the crystal lattice. Additionally, (5) crystallizes with a molecule of water, which occupies a special crystallographic position (on the twofold axis) and links two sugar molecules by hydrogen bonds. The CP MAS NMR spectra confirmed the presence of the intermolecular hydrogen bond involving the molecule of water in (5). Moreover, it was proved that in (1) an intramolecular hydrogen bond is formed between the glycosidic linkage and the nitro group.  相似文献   

4.
31 p-monosubstituted chalcones (E-1, 3-diphenylpropene-1-one) and the corresponding oxides (E-1-benzoyl-2-phenyloxirane) were tested for mutagenic activity on two strains of Salmonella typhimurium (TA98 and TA100) with and without rat liver microsomal and cytosolic enzymes. Highest mutagenicity (3.0 revertants/nmole in either strain) was seen with the 4-nitrochalcone, especially after S9 activation. Epoxidation, in general, increased the mutagenic activity of the respective chalcone. Benzoyl (4') substituted chalcones and their oxides with an electron-withdrawing substituent (e.g., nitro, fluoro) usually had higher activity than their phenyl (4) substituted counterparts, whereas the converse was the case with electron-donating substituents (e.g., acetamido, methoxy). Further multiple factorial analysis revealed that increasing hydrophilicity as indicated by the Hansch pi parameter, and resonance electronic contributions were more important than other factors including steric terms in explaining the mutagenicity of these compounds. Mutagenic effects of some chalcone oxides, particularly the 4-methoxy derivative, were markedly decreased by S9 treatment. The consequence of the weak-to-moderate mutagenicity of these compounds to dietary intake of hydroxylated and methoxylated chalcones is discussed.  相似文献   

5.
Three new prenylflavonoids, namely corylifols A-C (1-3), together with 13 known ones, were isolated from the seeds of Psoralea corylifolia. Their structures were elucidated by spectral methods including 1D and 2D NMR techniques. All the isolates were tested on antibacterial assays, and nine of them showed significant antibacterial activities against two pathogenic bacteria Staphylococcus aureus and S. epidermidis. The antibacterial structure-activity relationship of these prenylflavonoids (1-16) was also briefly discussed.  相似文献   

6.
N-Acetyl-AA(amino acid)-NHtBu derivatives of all 20 naturally occurring amino acids have been synthesized. Syntheses were performed via solution-phase methodology with yields that allow for access to gram quantities of substrates, in most cases. Syntheses include the coupling of a hindered amine, tert-butylamine, with each amino acid, either directly or in two steps using an activated ester isolated as an intermediate. The introduction of protecting groups was necessary in some cases. The development of synthetic sequences to access challenging substrates, such as the one derived from asparagine, are discussed.  相似文献   

7.
8.
In the present paper a new strategy has been studied to introduce solely or in combination N-sulfo, O-sulfo, N-acetyl, and N-carboxymethyl groups into chitosan with highest possible regioselectivity and completeness and defined distribution along the polymer chain. The aim was to generate compounds having lowest toxicity for determining the pharmacological structure function relationships among different backbone structures and differently arranged functional groups compared to those of heparin and heparan sulfate. The water-soluble starting material, chitosan, with a degree of acetylation (DA) of 0.14 and a molecular weight of 29 kD, allows one to apply most of the known reactions of chitosan as well as some reactions of heparin chemistry successfully and with improved regioselectivity and completeness. On the other hand, a number of these reactions were not successful by application to water-soluble high-molecular-weight chitosan (DA 0.45 and 150 kD). The starting material showed statistical N-acetyl (N-Ac) distribution along the polymer chain according to the rules of Bernoulli, with highest abundance of the GlcNAc-GlcNAc diad along with a lower abundance of triads, tetrads, and pentads. The space between the N-Ac groups was filled up in homogeneous reactions by N-sulfo and/or N-carboxymethyl groups, which also resulted in a Bernoulli statistical distribution. The N-substitution reaction showed highest regioselectivity and completeness with up to three combined different functional groups. The regioselectivity of the 3-O-sulfo groups was improved by regioselective 6-desulfation of nearly completely sulfated 3,6-di-O-sulfochitosan. By means of desulfation reactions, all of the possible intermediate sulfated products are possible. 6-O-Sulfo groups can also be introduced with highest regioselectivity and completeness, and a number of partially 6-desulfated products are possible.  相似文献   

9.
3 epoxy-resin hardeners, 4,4'-diaminodiphenyl ether (DDE), 4,4'-diaminodiphenylmethane (DDM), and 4,4'-diaminodiphenylsulfone (DDS), and their N-acetyl and N,N'-diacetyl derivatives were examined for their mutagenicity using Salmonella typhimurium TA98 and TA100 as the tester stains and an S9 mix containing a rat-liver 9000 X g supernatant fraction as the metabolic activation system. DDE and DDM were mutagenic towards TA98 and TA100 in the presence of S9 mix while DDS exhibited no significant mutagenic activity towards these tester strains. These epoxy-resin hardeners were metabolized in vivo and their N-acetyl and N,N'-diacetyl metabolites were found in the urine. Among these acetyl metabolites, only N-acetyl-DDE was found to be mutagenic towards TA98 and TA100 in the presence of S9 mix. None of these acetyl metabolites exhibited significant mutagenic activity towards these tester strains in the absence of S9 mix.  相似文献   

10.
In order to develop pure antiestrogens, a series of 7-hydroxy-3-(4-hydroxyphenyl)-3-methylchroman and 7-hydroxy-3-(4-hydroxyphenyl)-3-methylthiochroman derivatives with sulfoxide containing side chains at the 4-position were designed, synthesized, and evaluated. Among them, compounds 14b and 24b functioned as pure antiestrogens with the ability to downregulate ER, and their in vitro and in vivo antiestrogen activities were similar to those of ICI182,780. In addition, the structure-activity relationship indicated that the (3RS,4RS)-configuration between the 3- and 4-position, the methyl group at the 3-position, the 9-methylene chain between the scaffold and the sulfoxide moiety, and the terminal perfluoroalkyl moiety play an important role in increasing estrogen receptor binding and oral antiestrogen activities.  相似文献   

11.
We have recently observed that S-(2-hydroxyethylmercapto)-L-cysteine (L-CySSME), the mixed disulfide of L-cysteine and 2-mercaptoethanol, prevented cataracts induced in mice by acetaminophen (ACP) by functioning as a prodrug of L-cysteine and protecting the liver. This prompted the evaluation of the more lipophilic N-acetyl (Ac-CySSME) and ethyl ester (Et-CySSME) derivatives of L-CySSME as pro-prodrug forms, as well as the “D” enantiomer, as hepatoprotective agents. Serum ALT levels were measured at 24 hours after a toxic but nonlethal dose of ACP that insured 48 hour survival of the animals. Since the increases in ALT produced were highly variable (even after log transformation) and complicated the statistical analyses, we calculated confidence intervals for the mean ALT levels for each treatment group. This enabled comparisons to be made of the efficacy of L-CySSME as well as Ac-CySSME and Et-CySSME with other representative prodrugs of L-cysteine, namely, 2(RS)-methylthiazolidine-4(R)-carboxylic acid (MTCA), L-2-oxothiazolidine-4-carboxylic acid (OTCA), and N-acetyl-L-cysteine (NAC), in protecting the liver. It was shown that L-CySSME and MTCA administered intraperitoneally at 2.5 mmol/kg were superior to the other cysteine prodrugs at equimolar doses in protecting mice from hepatotoxicity elicited by a 400 mg/kg (2.65 mmol/kg) dose of ACP given i.p. 30 minutes prior to the prodrugs. The “D” form of CySSME was totally without protective effect. Oral doses of the prodrugs even at 2× the i.p. dose were less effective, although MTCA was the most protective. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 289–295, 1997.  相似文献   

12.
Aza-analogues of Acyclovir were obtained from N-(2-pivaloyloxyethyl)-N-(pivaloyloxymethyl)-p-toluenesulfonamide via a one-pot base silylation/nucleoside coupling procedure. The antiviral activities of all aza-nucleosides in vitro against a variety of viruses were evaluated. None of these compounds displayed any specific antiviral effects.  相似文献   

13.
14.
o-, m-, p-Phenylenediamines having 2,3,4-trihydroxy, 3,4 dihydroxy, and 4-hydroxybenzoyl moieties were prepared and their inhibitory activities were measured against topoisomerase I and II. More hydroxy groups on two aromatic rings increased the activities. Bis(trihydroxybenzoyl)-o-phenylenediamide showed IC(50)=0.90 and 0.09 microM against topoisomerase I and II, respectively. Compounds with hydroxy groups protected by acetyl moiety still had the activities. Less hydroxy groups decreased their activities. Benzothiazole derivatives also indicated the activities.  相似文献   

15.
The glycosaminoglycan heparin is a polyanionic polysaccharide most recognized for its anticoagulant activity. Heparin binds to cationic regions in hundreds of prokaryotic and eukaryotic proteins, termed heparin-binding proteins. The endogenous ligand for many of these heparin-binding proteins is a structurally similar glycosaminoglycan, heparan sulfate (HS). Chemical and biosynthetic modifications of heparin and HS have been employed to discern specific sequences and charge-substitution patterns required for these polysaccharides to bind specific proteins, with the goal of understanding structural requirements for protein binding well enough to elucidate the function of the saccharide-protein interactions and/or to develop new or improved heparin-based pharmaceuticals. The most common modifications to heparin structure have been alteration of sulfate substitution patterns, carboxyl reduction, replacement N-sulfo groups with N-acetyl groups, and chain fragmentation. However, an accumulation of reports over the past 50 years describe semi-synthetic heparin derivatives obtained by incorporating aliphatic, aryl, and heteroaryl moieties into the heparin structure. A primary goal in many of these reports has been to identify heparin-derived structures as new or improved heparin-based therapeutics. Presented here is a perspective on the introduction of non-anionic structural motifs into heparin structure, with a focus on such modifications as a strategy to generate novel reduced-charge heparin-based bind-and-block antagonists of HS-protein interactions. The chemical methods employed to synthesize such derivatives, as well as other unique heparin conjugates, are reviewed.  相似文献   

16.
Dicationic 2,6-diphenylpyrazines, aza-analogues and prodrugs were synthesized; evaluated for DNA affinity, activity against Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.) in vitro, efficacy in T. b. r. STIB900 acute and T. b. brucei GVR35 CNS mouse models. Most diamidines gave poly(dA-dT)2 ΔTm values greater than pentamidine, IC50 values: T. b. r. (4.8–37 nM) and P. f. (10–52 nM). Most diamidines and prodrugs gave cures for STIB900 model (11, 19a and 24b 4/4 cures); 12 3/4 cures for GVR35 model. Metabolic stability half-life values for O-methylamidoxime prodrugs did not correlate with STIB900 results.  相似文献   

17.
BACKGROUND: Adenine and adenosine-acting aminohydrolases are important groups of enzymes responsible for the metabolic salvage of purine compounds. Several subclasses of these enzymes have been described and given current knowledge of the full genome sequences of many organisms, it is possible to identify genes encoding these enzymes and group them according to their primary structure. METHODS AND RESULTS: This article is a short overview of the enzymes classified as adenine and adenosine deaminase. It summarises knowledge of their occurrence, genetic basis and their catalytic and structural properties. CONCLUSIONS: These enzymes are constitutive components of purine metabolism and their impairment may cause serious medical disorders. In humans, adenosine deaminase deficiency is linked to severe combined immunodeficiency and as such the enzyme has been approved for the first gene therapy trial. The role of these enzymes in plants is unclear, since the activity was has not been detected in extracts and putative genes have not been yet cloned and analyzed. A literature search and amino acid identity comparison show that Ascomycetes contain only adenine deaminase, but not adenosine deaminase, despite the fact that corresponding genes are annotated in databases as the adenosine cleaving enzymes because they share the same conserved domain.  相似文献   

18.
The reaction pattern of an extracellular chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum ATCC 56676, was investigated by use of chitooligosaccharides [(GlcNAc)(n)(), n = 3-6] and partially N-deacetylated chitooligosaccharides as substrates. When 0.5% of (GlcNAc)(n)() was deacetylated, the corresponding monodeacetylated products were initially detected without any processivity, suggesting the involvement of a multiple-chain mechanism for the deacetylation reaction. The structural analysis of these first-step products indicated that the chitin deacetylase strongly recognizes a sequence of four N-acetyl-D-glucosamine (GlcNAc) residues of the substrate (the subsites for the four GlcNAc residues are defined as -2, -1, 0, and +1, respectively, from the nonreducing end to the reducing end), and the N-acetyl group in the GlcNAc residue positioned at subsite 0 is exclusively deacetylated. When substrates of a low concentration (100 microM) were deacetylated, the initial deacetylation rate for (GlcNAc)(4) was comparable to that of (GlcNAc)(5), while deacetylation of (GlcNAc)(3) could not be detected. Reaction rate analyses of partially N-deacetylated chitooligosaccharides suggested that subsite -2 strongly recognizes the N-acetyl group of the GlcNAc residue of the substrate, while the deacetylation rate was not affected when either subsite -1 or +1 was occupied with a D-glucosamine residue instead of GlcNAc residue. Thus, the reaction pattern of the chitin deacetylase is completely distinct from that of a Zygomycete, Mucor rouxii, which produces a chitin deacetylase for accumulation of chitosan in its cell wall.  相似文献   

19.
A series of 3-carbamate and 29-ester celastrol derivatives (compounds 126) were designed and synthesized. These analogues were evaluated for their cytotoxic activities against several cancer cell lines. Cytotoxicity data revealed that the properties of substituents and substitution position had important influence on cytotoxic activity. Modification of C-3 hydroxyl with size-limited groups did not reduce the activity obviously. The introduction of polarity group like piperazine could improve the solubility. Compound 23 was chosen to further evaluate anti-tumor efficacy in vivo. It showed higher inhibition rate and better safety than celastrol during in vivo experiment by intragastric administration. The preliminary antitumor studies of compound 23in vivo showed that it might be promising for the development of new antitumor agents.  相似文献   

20.
Norethisterone (NET) is a progestagenic compound with very weak androgenicity and estrogenicity. These low androgenic and estrogenic activities may be attributed to NET itself or induced by metabolites of NET. In order to improve the bioactivity of NET, the effects of a 7alpha-methyl substitution were studied. Thus this study has two objectives: first the comparison between biological activities of NET and 7alpha-methyl-NET (MeNET), and second the biological activity of tentative metabolites of NET and those of MeNET. The metabolites consist of a 3-keto-, 3alpha- or 3beta-hydroxy-group located next to a carbon 4 to 5 double bond (Delta(4)) or a 5alpha-hydrogen atom. The 7alpha-methyl substitution was of special interest as it prevents 5alpha-reduction. The biological activities of NET, MeNET and their potential metabolites were assessed by in vitro binding, transactivation and proliferation assays on progesterone (PR), androgen (AR), estrogen (ER) and glucocorticoid (GR) receptors and by in vivo progestagenic McPhail, androgenic Hershberger, estrogenic Allen-Doisy tests and combined estrogenic and progestagenic ovulation inhibition tests. NET is a compound with five- to eight-fold weaker PR binding and transactivation activities than the reference compound Org 2058 (100%) and two-fold stronger than progesterone. Binding and transactivation activities of NET for AR (DHT=100%) are 3.2 and 1.1%, respectively, for ER none (E2=100%) and for GR below 1% (DEX=100%). MeNET is 1.5- to two-fold less progestagenic and ten- to 20-fold more androgenic than NET, while it does not show activity for ER and GR. The relative binding affinity of 5alpha-NET was seven-fold lower for PR and 1.5-fold higher for AR than for NET, while in transactivation assays 5alpha-NET was only active at levels below 1% for all tested receptors. 3beta-Hydroxy-(5alpha-reduced)-metabolites showed clear ER binding and transactivation activities, while 3alpha-hydroxy-(5alpha-reduced)-metabolites did hardly possess these characteristics. These hydroxy metabolites did not bind or activate other receptors. Substitution of 7alpha-methyl to NET metabolites led to similar characteristics, but with higher activities for AR and ER and weaker activity for PR. The outcome of in vivo tests showed a remarkable effect for MeNET. Progestagenic activity in rabbits appeared for NET equipotent to or eight-fold higher than for MeNET, after subcutaneous or oral treatment, respectively. On the other hand, MeNET showed in rats a ten-fold higher androgenicity and eight-fold higher estrogenicity than NET. Ovulation inhibition was induced at very low oral or subcutaneous dose levels, being 120- or ten-fold lower than for NET, respectively. The estrogenicity can also be induced by 3alpha- or 3beta-hydroxy metabolites of MeNET, which are 15 or even more than 40-fold stronger than those of NET, respectively. In conclusion, after the introduction of a 7alpha-methyl substituent to NET an increased estrogenicity and androgenicity and a reduced progestagenic activity was found. The in vivo estrogenicity is mainly due to 3beta-hydroxy-MeNET and to a lesser extent to 3alpha-hydroxy-MeNET, while the androgenicity and progestagenicity are most likely caused by MeNET itself. Since the 7alpha-methyl substituent inhibits 5alpha-reductase, 5alpha-reduced MeNET metabolites can be excluded from biological activities. As MeNET is a very effective ovulation inhibitor, due to its mixed progestagenic and estrogenic profile, a further reduction of androgenicity of MeNET may yield new contraceptives with an attractive profile for contraception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号