首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2 rat cell lines originated from ascites hepatoma AH66-B and esophageal tumor R1 were examined for their inducibility of sister-chromatid exchanges (SCEs) after treatment with 14 kinds of indirect mutagens/carcinogens, including 6 amine derivatives, 4 azo compounds, 3 aromatic hydrocarbons and 1 steroid. Of the 14 chemicals tested, 2-acetylaminofluorene (AAF), butylbutanolnitrosamine (BBN), dimethylnitrosamine (DMN), cyclophosphamide (CP), urethane, 2-methyl-4-dimethylaminoazobenzene (2-MeDAB), 3′-methyl-4-dimethylaminoazobenzene (3′-MeDAB), 4-o-tolylazo-o-toluidine (4-TT), benzo[a]pyrene (BP), 7,12-dimethyl-benz[a]anthracene (DMBA) and diethylstilbestrol (DES) were estimated to be effective inducers of SCEs in AH66-B and/or R1 cells, without the use of exogenous activating systems. Cell-mediated SCE tests with 6 selected chemicals, CP, 2-MeDAB, 4-TT, BP, DMBA and DES, showed a significant increase of SCEs in Chinese hamster Don-6 cells co-cultivated with AH66-B or R1 cells, depending on the number and sensitivity of AH66-B or R1 cells, as well as on the dose of chemicals tested, whereas singly cultured Don-6 cells were much less sensitive or almost insensitive to these chemicals. The above findings suggest that AH66-B and R1 cells may retain metabolic activities to convert a wide range of indirect mutagens/carcinogens into their active forms to induce SCEs, and that these cell lines provide simple and reliable screening systems in vitro, including the cell-mediated SCE assay, for detection of genotoxic agents, without the use of exogenous activation systems.  相似文献   

2.
Norharman, widely distributed in our environment such as cigarette smoke and cooked foods, is not mutagenic to Salmonella strains, but becomes mutagenic to Salmonella typhimurium TA98 and YG1024 with S9 mix in the presence of aromatic amines, including aniline and o-toluidine. Therefore, we have designated norharman as a "co-mutagen". Since, humans are simultaneously exposed to norharman and aromatic amines in daily life, it is important to clarify the mechanisms of its co-mutagenic action to further understanding of the potential genotoxic effects in humans. Regarding the mechanisms of this action of norharman with aniline, a mutagenic compound, 9-(4'-aminophenyl)-9H-pyrido[3,4-b]indole[aminophenylnorharman (APNH)] is produced by their interaction, and converted to the hydroxyamino derivative which eventually forms the DNA adduct, dG-C8-APNH through possible ultimate reactive forms with esterification, and this induces mutations. Also other aminophenyl-beta-carboline compounds, such as 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole[amino-3'-methylphenylnorharman (3'-AMPNH)], 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole [amino-2'-methylphenylnorharman (2'-AMPNH)], 9-(4'-aminophenyl)-1-methyl-9H-pyrido[3,4-b]indole[aminophenylharman (APH)] and 9-(4'-amino-3'-methylphenyl)-1-methyl-9H-pyrido[3,4-b]indole[amino-3'-methylphenylharman (AMPH)], have been found on reaction of norharman or harman with aniline or toluidine isomers. These compounds showed mutagenic and clastogenic actions in bacterial and mammalian cells. Among them, APNH demonstrated the most potent activity, and it was most extensively studied. When APNH was administered as a single dose to F344 rats, severe testicular toxicity was observed after 6 days. Moreover, liver preneoplastic lesions (GST-P-positive foci) in the liver clearly developed in animals fed 10-50 ppm of APNH in the diet for 4 weeks. Since, APNH was detected in 24 h urine of rats upon simultaneous administration with norharman and aniline by gavage, it is likely to be also produced from norharman and aniline in the human body. From these findings, it is suggested that aminophenyl-beta-carboline derivatives may be classified as one of the novel types of endogenous mutagens and carcinogens.  相似文献   

3.
B Kaina  O Aurich 《Mutation research》1985,149(3):451-461
Chinese hamster V79 cells were pulse-treated (for 60 min) with various mutagens three, two or one cell cycles before fixation (treatment variants A, B and C, respectively) and the frequencies of induced SCEs were analysed and compared. The degree of increase in frequency of SCEs with dose in the treatment variants depended on the mutagen used. For the methylating agents MNU, MNNG and DMPNU, high yields of SCEs were obtained in the treatment variants A and B, and there was no difference in the efficiency with which these agents induced SCEs in these treatment variants. In the treatment variant C, however, no SCEs were induced with mutagen doses yielding a linear increase in SCE frequency in treatment variants A and B. A slight increase in SCE frequency in treatment variant C was observed only when relatively high doses of MNU or MNNG were applied. Like the above agents, EMS, ENU and MMS induced more SCEs in treatment variants A and B than in C, but for these agents treatment variant B was most effective and SCEs were induced over the entire dose range, also in treatment variant C. As opposed to the methylating and ethylating agents, MMC induced SCEs with high efficiency when treatment occurred one or two generations prior to fixation. There was no difference in SCE frequency between these treatment variants. MMC was completely ineffective for the induction of SCEs when treatment occurred three generations before fixation. The unexpectedly low SCE frequencies induced by the methylating and ethylating agents when treatment occurred one generation before fixation were not due to the exposure of cells to BrdU prior to mutagen treatment. From the results obtained, it is concluded that DNA methylation and ethylation lesions give rise to SCEs only with very low probability during the replication cycle after the lesion's induction, and that subsequent lesions produced during or after replication of the methylated or ethylated template (secondary lesions) are of prime importance for SCE formation after alkylation. For MMC, however, primary lesions seem to be most important for SCE induction.  相似文献   

4.
Lymphocytes from healthy adults were studied for sister-chromatid exchanges (SCEs) when pulse-treated in G0 with mitomycin C (MMC), ethyl methanesulfonate (EMS), or 4-nitroquinoline N-oxide (4NQO) at various temperatures ranging from 0 degrees C to 41 degrees C and then cultured in medium containing 5-bromodeoxyuridine at 37 degrees C. The results showed that the frequencies of SCEs induced by MMC or EMS varied according to the treatment temperature. In MMC- or EMS-exposed cultures, the SCE frequency increased continuously with increasing treatment temperature; treatment at 37 degrees C resulted in a 3-4 times greater induction of SCEs than did that at room temperature (25 degrees C). On the other hand, SCE frequencies in cells exposed to 4NQO remained within normal deviation, showing no temperature-dependent changes. Baseline SCE frequencies remained almost constant within the temperature range tested. These data indicate that treatment temperature is a very critical factor in determining the sensitivity of cells to the chemical induction of SCEs.  相似文献   

5.
Shishu  A.K. Singla  I.P. Kaur 《Phytomedicine》2003,10(6-7):575-582
Dibenzoylmethane (DBM), a structural analogue of curcumin (a bioactive phytochemical present in a widely used spice turmeric) was screened for its inhibitory effect against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor1254-induced rat liver S9 homogenate. DBM has been reported to antagonize the mutagenicity of several chemical carcinogens in vitro and has recently been shown to be even more effective than curcumin in suppressing the 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors in rats. But there are no reports regarding its antimutagenic properties against cooked food mutagens. Results of the present investigations clearly indicate that dibenzoylmethane is a very potent antimutagenic agent, that could effectively inhibit mutagenicity induced by all the tested cooked food mutagens in both the frame shift (TA98) as well as the base pair mutation sensitive (TA100) strains of S. typhimurium. These highly potent inhibitory effects of dibenzoylmethane against heterocyclic amines observed in our preliminary investigations strongly warrant further studies of its efficacy as a cancer chemopreventive agent.  相似文献   

6.
The effects of heat treated vegetables on mutagenicity were studied using the Salmonella typhimurium system. The mutagens used were 3-amino-1-methyl-5H-pyrido[4,3-b]indole, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide, 4-nitroquinoline-1-oxide, acridine yellow and 2-aminoanthracene. Most of the heated vegetables unexpectedly showed greater inhibitory activity against the mutagenicity than unheated samples. The activity was increased markedly by heat treatment of water soluble indigestible polysaccharides (IPS). The increase in inhibitory activity due to heat treatment of IPS coincided well with the decrease in their viscosity. Incubating mixtures of mutagens with heated water soluble IPS decreased their affinity for XAD-2 resin. Heating seems to increase the detoxification ability of dietary fibers.  相似文献   

7.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

8.
The modulating effects of pretreatment of cultured cells with indole-3-carbinol (I3C) and indole-3-acetonitrile (I3A) on the induction of sister-chromatid exchanges (SCEs) by mutagens from different chemical classes were investigated. Cultured primary chick embryo hepatocytes were treated for different periods with I3C (25 micrograms/ml) and with I3A (35 micrograms/ml). Treatment with I3C resulted in a 3-fold increase in ethoxyresorufine-O-deethylase (Erod) activity and a 2-fold increase in ethoxycoumarine-O-deethylase (Etco) activity. Treatment with I3A resulted in a 1.6-fold increase in Erod activity and a 2-fold increase in Etco activity. Pretreatment of cultured primary chick embryo hepatocytes with I3C resulted in a 30-45% decrease in the number of SCEs induced by benzo[a]pyrene (B(a)P) and dimethylnitrosamine (DMN) in co-cultured V79 Chinese hamster cells. No decrease in SCE induction was observed for 2-aminoanthracene (2AA) and the direct-acting alkylating agent ethyl methanesulphonate (EMS). In contrast, when dibromoethane (DBE) was tested pretreatment with I3C resulted in an increase in SCE induction. Pretreatment with I3A again resulted in a 20-40% decrease in SCE induction for B(a)P whereas no decrease was observed for DMN, 2AA and EMS. The results of this study indicate that the type of effect of indole pretreatment largely depends on the type of mutagen selected.  相似文献   

9.
Female BALB/c mice were fed a low fat diet (1% safflower oil, by weight) or one supplemented with 25% (by weight) of beef fat or olive oil. The abilities of these diets to modify the in vitro and in vivo hepatic conversion of the dietary carcinogens aflatoxin B1, 2-amino-3, 4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) to bacterial mutagens was evaluated. Dietary olive oil appeared to increase the metabolism of both MeIQ and Trp-P-2 to bacterial mutagens in vivo using the intrasanguineous host-mediated assay. Feeding mice either of the high-fat diets increased hepatic conversion of these two compounds to bacterial mutagens in vitro. Dietary fat had no effect on the metabolism of aflatoxin B1. Subsequent experiments suggested that the in vivo effects of dietary olive oil on MeIQ and Trp-P-2 mutagenesis were due to the induction of hepatic enzyme activities rather than to increased rates of uptake of the carcinogen from the gut-lumen.  相似文献   

10.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

11.
The induction of sister-chromatid exchanges (SCEs) was studied in phytohemagglutinin (PHA)-stimulated human lymphocytes exposed for 1 h to mitomycin C (MMC, 3 X 10(-6) M), ethyl methanesulphonate (EMS, 2 X 10(-2) M), or 4-nitroquinoline-1-oxide (4NQO, 3 X 10(-5) M) at various cell-cycle stages of 72-h cultures. The doses of the chemical were chosen to give about 20 SCEs per cell when treated at Go. The SCE frequency increased almost linearly with MMC or EMS treatments at later times after PHA stimulation, peaking with those at 36 h (at around the first G1/S boundary in the 2 consecutive cell cycles, which was revealed by concomitant experiments), and then decreased with subsequent treatment times. Cell-cycle kinetics and the cell stages at which the cells were treated were measured by autoradiography and sister-chromatid differential staining. The data show that MMC and EMS produce larger numbers of SCEs when treated at stages closer to the beginning of S, and that the most efficient time of treatment is the G1/S boundary in the first cell cycle of the two consecutive cycles before sampling. Pulse treatment with EMS caused about 3 times larger inductions of SCEs when done at late G1/early S(G1/S boundary) in the first cell cycle compared to that at G0/early G1, whereas identical exposure to MMC at the first G1/S boundary produced only 1.5 times larger numbers of SCEs than that at G0/early G1. EMS and MMC both, however, induced 30-40% larger numbers of SCEs when treated at the G1/S boundary in the first cell cycle than when treated at the second cell cycle before sampling. On the contrary, treatment with 4NQO led to the induction of about the same numbers of SCEs even when treated at different cell-cycle stages before the second G1/S boundary. The SCE frequency in 4NQO-treated cells then decreased with subsequent treatment times.  相似文献   

12.
A potent mutagen, 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), isolated from a tryptophan pyrolysate, was activated metabolically by rat liver microsomes and bound to DNA. An active metabolite formed by rat liver microsomes was identified as 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2). Synthetic N-OH-Trp-P-2 reacted with DNA efficiently after O-acetylation or to a lesser extent under acidic conditions (pH 5.5), but did not react appreciably under neutral conditions. Acid hydrolysis of DNA modified by O-acetylated N-OH-Trp-P-2 (N-OAc-Trp-P-2) gave 3-(8-guanyl)amino-1-methyl-5H-pyrido[4,3-b]indole (Gua-Trp-P-2), which is the main modified base of DNA formed by Trp-P-2 in the presence of microsomes. The glycoside bond of the modified base was found to be cleaved by heating at 100° for 1 hr at pH 7.0. In this way, the modified base was liberated from DNA modified by N-OAc-Trp-P-2 in good yield. N-OAc-Trp-P-2 bound to guanyl cytidine more effectively than to guanylic acid, suggesting that covalent binding with guanyl moiety of DNA involves intercalation of the ultimate mutagen into a base pair.  相似文献   

13.
In experiments to assess the effects of several biological, chemical, and physical variables on sister-chromatid exchange (SCE) induction in cultured lymphocytes exposed to mitomycin C (MMC) before PHA stimulation we observed: (1) high SCE frequencies in female cells, and normal SCE frequencies in Y-bearing metaphases in mixed cultures containing equal numbers of MMC-treated female lymphocytes and untreated male lymphocytes; (2) small, but statistically significant, decreases in SCEs with increasing pH after G0 exposure in the pH range 6.6–7.6; (3) pronounced reductions in MMC-induced SCEs in lymphocytes exposed at 4°C vs. 37°C. In other studies, SCE induction was evaluated in cultures exposed during G0 to MMC concentrations ranging from 0.25 to 2.5 μg/ml for varying time intervals ranging from 5 min to 24 h. For all concentrations tested SCE induction varied as a linear function of G0 exposure time. To compare SCE induction between cultures, we calculated the mean frequencies of SCEs induced per metaphase/unit dose MMC/unit G0 exposure time (SCE/μg/h). A mean frequency of 20.7 ± 4.8 SCE/μg/h was observed for 41 lymphocyte cultures suggesting that a single term adequately describes the rate of SCE induction following G0 exposure to a 10-fold range in concentration of MMC for time intervals of 30 min to 24 h.  相似文献   

14.
Curcumin (C) and its natural analogues demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC), known for their potent anti-inflammatory, antioxidant, antimutagenic and anticarcinogenic effects, were tested for their possible inhibitory effects against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor induced rat liver S9 homogenate. In the present investigations, curcumin as well as its two natural analogues i.e., dmC and bdmC were found to be highly effective in suppressing genotoxicity of all the tested cooked food mutagens in a dose-dependent manner, in both the frame shift (TA98) as well as base pair mutation sensitive (TA100) strains of S. typhimurium. However, bdmC appeared to be a relatively less active antimutagen compared to C and dmC. More than 80% inhibition of mutagenicity was observed at 200 microg/plate in case of C and dmC in both TA98 and TA100 against all tested cooked food mutagens. Where as, bdmC showed 39-79% inhibition in TA100 and 60-80% inhibition in TA98, at a dose of 200 microg/plate. These findings warrant further biochemical, enzymatic and in vivo investigations in animal models as well as in humans to establish the chemoprotective effect of these agents against mutagenic heterocyclic amines found in cooked food.  相似文献   

15.
The potent mutagens 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2, 62450-07-1), 2-amino-6-methyldipyrido-[1,2-a:3', 2'-d]imidazole (Glu-P-1, 67730-11-4) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ, 76180-96-6), isolated from pyrolysates of tryptophan and glutamic acid and from broiled sardines, respectively, were effectively degraded by chlorinated tap water with a concomitant loss of mutagenicity toward Salmonella typhimurium TA98 and TA100. The half-life of 10 microM IQ in the presence of 1.5 ppm of residual chlorine was less than 10 sec; those of Glu-P-1 and Trp-P-2 were 0.5-1 and 2-3 min, respectively. This means that a glass of chlorinated tap water (150 ml) containing 1.5 ppm of residual chlorine can break down about 200 micrograms of these pyrolysate mutagens within a couple of minutes.  相似文献   

16.
狄少杰  刘凌云 《遗传学报》1992,19(3):212-220
应用IdU-毛玉米油体内SCE技术,以不同剂量的典型诱变剂MMC和CP对70尾黄鳝的脾、肾、血淋巴细胞进行了体内诱发SCE敏感性测试。结果:三种细胞的染色体SCE自发频率均较低,不同剂量MMC和CP诱发黄鳝三种细胞SCE频率均较对照组显著增加。诱变剂剂量与诱发SCE频率呈线性关系。三种细胞染色体SCE对MMC和CP的敏感性次序为肾>脾>血淋巴细胞。与几种鱼和其它动物比较,黄鳝三种细胞的SCE自发频率均较低,对MMC和CP诱发SCE的敏感性均较高,因此认为黄鳝可作为较理想的体内SCE检测系统。  相似文献   

17.
S Abe 《Mutation research》1986,173(1):55-60
Arachidonic acid (AA), a prostaglandin precursor, significantly potentiated sister-chromatid exchange (SCE) induction in vitro by benzo[a]pyrene (BP) and 7,12-dimethylbenz[a]anthracene (DMBA) in the aryl hydrocarbon hydroxylase (AHH)-inducible human hepatoma C-HC-4 cells, and to a lesser extent in the non-inducible rat tumor AH66-B and R1 and Chinese hamster Don-6 cells, all of which were less sensitive to these compounds than C-HC-4 cells. Indomethacin (IM), an inhibitor of prostaglandin endoperoxide synthetase (PES), moderately suppressed SCE induction by BP or DMBA in AH66-B and R1 cells, but it exerted no such effect in C-HC-4 and Don-6 cells. In C-HC-4 cells, however, IM completely eliminated the potentiating effect of AA on SCE induction by both BP and DMBA. The above findings suggest that PES in prostaglandin biosynthesis may also be involved in the metabolic activation of polycyclic aromatic hydrocarbons to genotoxic forms capable of inducing SCEs, in addition to AHH system.  相似文献   

18.
The effect of theobromine (TB) and diphylline (DP) or (1,2-dihydroxy-3-propyl)theophylline on SCE rates induced in vitro by mitomycin C (MMC), and the effect of caffeine on SCE rates induced in vitro by cytosine arabinoside (Ara-C) was studied. The combined treatments with MMC plus TB or DP showed the potentiating ability of the latter drugs. Caffeine also enhanced SCEs induced by Ara-C in cultured human lymphocytes. Caffeine and adriamycin (ADR) did not act synergistically on induction of SCEs. In a combined study, in vivo and in vitro, lymphocytes taken from 2 leukemic patients who had been given chlorambucil (CBC) or Ara-C by injection 3 h before, and then treated with caffeine in vitro, were found to have synergistically increased exchange frequencies.  相似文献   

19.
The metabolically competent human lymphoblastoid cell line MCL-5 was treated with a panel of mutagens to assess the induction of DNA damage. Treatment effects were observed by monitoring cell proliferation and by single-cell gel electrophoresis (SCGE). The direct-acting mutagens benzo[a]pyrene-7,8-diol 9,10-epoxide (BPDE) and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), as well as pro-mutagens requiring metabolic activation, i.e. benzo[a]pyrene (BaP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 4-N-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and cigarette-smoke condensate (CSC), were assayed by SCGE. Assay schemes were adapted for the MCL-5 cell line and for low levels of strand break induction, by inclusion of the DNA synthesis inhibitors cytosine arabinoside and hydyroxyurea, and by extending the electrophoresis time. For all mutagens tested, dose-dependent increases of median and average tail moment values among 50 nucleoids per slide were observed. The determining factors for selecting the treatment doses for mutation-induction experiments were the solubility of BaP and PhIP in the exposure medium, and the cytotoxicity exhibited by BPDE, MNNG and CSC. Induction of DNA strand breaks was obtained at mutagen concentrations permitting sufficient cell proliferation, except in the case of MNNG.  相似文献   

20.
DNA crosslinking, sister-chromatid exchange and specific-locus mutations   总被引:2,自引:0,他引:2  
Chinese hamster ovary cells were treated with the DNA-crosslinking chemicals, mitomycin C (MMC) and porfiromycin (POR), and their monofunctional derivative decarbamoyl mitomycin C (DCMMC). After exposure, the cells were studied for the induction of sister-chromatid exchanges (SCEs) and mutations at the hypoxanthine phosphoribosyltransferase and adenine phosphoribosyltransferase loci. The frequency of SCEs varied significantly in successive sampling intervals, requiring the weighting of each interval by the percentage of second-division mitosis in that interval to obtain the mean SCE frequency for each dose. All 3 compounds were potent inducers of SCEs but weakly mutagenic. All 3 chemicals by concentration were approximately equally effective in inducing SCEs or mutations. When the induced SCEs and mutations were compared at equal levels of survival, DCMMC was slightly more effective than MMC or POR in inducing SCEs and somewhat less mutagenic. These results indicate that the DNA interstrand crosslink is not the major lesion responsible for the induction of SCE or mutation by these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号