首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic modifications causing germ cell death during meiotic prophase in the mouse frequently have sexually dimorphic phenotypes where oocytes reach more advanced stages than spermatocytes. To determine to what extent these dimorphisms are due to differences in male versus female meiotic prophase development, we compared meiotic chromosome events in the two sexes in both wild-type and mutant mice. We report the abundance and time course of appearance of structural and recombination-related proteins of fetal oocyte nuclei. Oocytes at successive days post coitus show rapid, synchronous meiotic prophase development compared with the continuous spermatocyte development in adult testis. Consequently, a genetic defect requiring 2–3 days from the onset of prophase to reach arrest registers pachytene as the developmental endpoint in oocytes. Pachytene spermatocytes, on the other hand, which normally accumulate during days 4–10 after the onset of prophase, will be rare, giving the appearance of an earlier endpoint than in oocytes. We conclude that these different logistics create apparent sexually dimorphic endpoints. For more pronounced sexual dimorphisms, we examined meiotic prophase of mice with genetic modifications of meiotic chromosome core components that cause male but not female sterility. The correlations between male sterility and alterations in the organization of the sex chromosome cores and X–Y chromatin may indicate that impaired signals from the XY domain (XY chromosome cores, chromatin, dense body and sex body) may interfere with the progression of the spermatocyte through prophase. Oocytes, in the absence of the X–Y pair, do not suffer such defects.  相似文献   

2.
The distribution and the behaviour of the nucleolus organizer regions (NORs) were analysed during the spermatogenesis and oogenesis of K. flavicollis with the silver staining method. The Ag-stainability of the NORs increases in growing spermatocytes up to pachytene and is absent during the remainder of the meiotic prophase. During female meiosis the nucleolar material undergoes a more complex transformation. It is active until pachytene; in early diplotene the mass of silver stainable material progressively increases as an effect of rDNA amplification. By the end of meiotic prophase the nucleolar strands disappear and a large nucleolus is rebuilt in the mature oocyte.  相似文献   

3.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

4.
Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the pairing, recombination, and segregation of meiotic chromosomes.  相似文献   

5.
6.
Two disjunction defective meiotic mutants, ord and mei-S332, each of which disrupts meiosis in both male and female Drosophila melanogaster, were analyzed cytologically and genetically in the male germ-line. It was observed that sister-chromatids are frequently associated abnormally during prophase I and metaphase I in ord. Sister chromatid associations in mei-S332 are generally normal during prophase I and metaphase I. By telophase I, sister chromatids have frequently precociously separated in both mutants. During the first division sister chromatids disjoin from one another frequently in ord and rarely in mei-S332. It is argued that the simplest interpretation of the observations is that each mutant is defective in sister chromatid cohesiveness and that the defect in ord manifests itself earlier than does the defect in mei-S332. In addition, based on these mutant effects, several conclusions regarding normal meiotic processes are drawn. (1) The phenotype of these mutants support the proposition that the second meiotic metaphase (mitotic-type) position of chromosomes and their equational orientation is a consequence of the equilibrium, at the metaphase plate, of pulling forces acting at the kinetochores and directed towards the poles. (2) Chromosomes which lag during the second meiotic division tend to be lost. (3) Sister chromatid cohesiveness, or some function necessary for sister chromatid cohesiveness, is required for the normal reductional orientation of sister kinetochores during the first meiotic division. (4) The kinetochores of a half-bivalent are double at the time of chromosome orientation during the first meiotic division. Finally, functions which are required throughout meiosis in both sexes must be considered in the pathways of meiotic control.  相似文献   

7.
Summary The karyotypes and the meiotic behaviour of two spontaneous reciprocal translocations and one pericentric inversion are described. One of these translocations was characterized by chiasma-formation in the interstitial-segments, the other was not. The types of orientation and distribution of the chromosomes from the chain-configurations in meta-anaphase I are specified, compared mutually and with those of translocation rings and chains in maize and the similarities and differences are pointed out. In the range of the heterozygous pericentric inversion there was no pairing in meiotic prophase and therefore no chiasma formation and sterility. It will be tried to cross especially one of the translocations with the inversion-type in order to rebuild the karyotype ofVicia faba. In this case it would be possible to distinguish between all five pairs of small chromosomes according to their morphological structure, a possibility very important in localizing chromosome aberrations on the chromosomes ofVicia faba.

Mit 15 Abbildungen  相似文献   

8.
9.
Oogonia undergo numerous mitotic cell cycles before completing the last DNA replication and entering the meiotic prophase I. After chromosome pairing and chromatid exchanges between paired chromosomes, the oocyte I remains arrested at the diplotene stage of the first meiotic prophase. Oocyte growth then occurs independently of cell division; indeed, during this growth period, oocytes (4n DNA) are prevented from completing the meiotic divisions. How is the prophase arrest regulated? One of the players of the prophase block is the high level of intracellular cAMP, maintained by an active adenylate cyclase. By using lethal toxin from Clostridium sordellii (LT), a glucosyl-transferase that glucosylates and inactivates small G proteins of the Ras subfamily, we have shown that inhibition of either Ras or Rap or both proteins is sufficient to release the prophase block of Xenopus oocytes in a cAMP-dependent manner. The implications of Ras family proteins as new players involved in the prophase arrest of Xenopus oocytes will be discussed here.  相似文献   

10.
Summary Ten new mutants affected during caryogamy and first meiotic prophase have been isolated in Podospora anserina. They belong to nine loci, and only one mutant is allelic with a gene previously known. The loci are distributed on six of the seven linkage groups. The precise moment where meiosis is blocked or altered has been studied by light microscopy for each mutant. Several of them have a pleiotropic phenotype which suggests that the altered functions involved in meiotic process in these mutants are also involved in vegetative growth.The systematic search of meiotic mutants in P. anserina permitted the identification of twelve genes involved during first meiotic prophase. The time of gene action and the nature of the controled steps are discussed.  相似文献   

11.
12.
13.
Cytological investigations are reported for two Chondria species, the Pacific species Chondria nidifica Harvey and Chondria tenuissima (Goodenough et Woodward) C. A. Agardh from the shore of the Marmara Sea in Istanbul. Nuclear division during mitosis and meiosis has been followed in somatic cells and in tetrasporangial mother cells respectively of diploid tetrasporic plants. The spherical interphase nucleus stains densely, showing many chromatin granules. Mitotic nuclei in the apical groove show a large number of chromosomes at metaphase; the chromosome number has been estimated at diakinesis to be 40 in both C. nidifica and C. tenuissima. The meiotic nuclei of tetraspore mother cells in prophase contain several relatively large nucleolar-derivatives in both species. The nucleolar derivatives disappear completely before the chromosomes begin to differentiate. In meiotic prophase the tetraspore mother cell enlarges from its original diameter. The period of the second meiotic anaphase seems to be extremely short in comparison with other nuclear phases. When the chromosomes reach the poles, they spread and subsequently form a relatively compact mass at telophase. The spindle has not been observed in C. tenuissima. Photographs are presented of nucleoli and nucleolar-derivatives in mitotic and meiotic divisions.  相似文献   

14.
The whole-mount SC preparations from males of three species of the genus Ellobius (Ellobius fuscocapillus, Ellobius lutescens), and Ellobius tancrei were studied by electron microscopy. In the males of Ellobius fuscocapillus, behavioral peculiarities of the sex bivalent (viz. the normal male heterozygosity) are characterized by early complete desynapsis of sex chromosomes (X, Y), occurring at late pachytene-early diplotene. The karyotype of species Ellobius lutescens is unique for mammals. In both sexes it is characterized by an odd number of chromosomes (2n=17). At prophase I the unpaired chromosome 9 is not involved in synapsis with other chromosomes and forms a sex body at the end of pachytene.The complete Robertsonian fan has been described for superspecies Ellobius tancrei. As shown on the basis of G-band patterns the male and female sex chromosomes are cytologically indistinguishable.Analysis of whole-mount SC preparations revealed the formation of a closed sex SC bivalent and showed some morphological differences in the axes of sex chromosomes at meiotic prophase I. A number of assumptions are made about the relationship between the behavior of sex chromosomes, their evolution and the sex determination system in the studied species of genus Ellobius.
  相似文献   

15.
R. C. Brown  B. E. Lemmon 《Protoplasma》1991,161(2-3):168-180
Summary Microsporogenesis inSelaginella was studied by fluorescence light microscopy and transmission electron microscopy. As in other examples of monoplastidic meiosis the plastids are involved in determination of division polarity and organization of microtubules. However, there are important differences: (1) the meiotic spindle develops from a unique prophase microtubule system associated with two plastids rather than from a typical quadripolar microtubule system associated with four plastids; (2) the division axes for first and second meiotic division are established sequentially, whereas as in all other cases the poles of second division are established before those of first division; and (3) the plastids remain in close contact with the nucleus throughout meiotic prophase and provide clues to the early determination of spindle orientation. In early prophase the single plastid divides in the plane of the future division and the two daughter plastids rotate apart until they lie on opposite sides of the nucleus. The procytokinetic plate (PCP) forms in association with the two slender plastids; it consists of two spindle-shaped microtubule arrays focused on the plastid tips with a plate of vesicles at the equatorial region and a picket row of microtubules around one side of the nucleus. Second plastid division occurs just before metaphase and the daughter plastids remain together at the spindle poles during first meiotic division. The meiotic spindle develops from merger of the component arrays of the PCP and additional microtubules emanating from the pair of plastid tips located at the poles. After inframeiotic interphase the plastids migrate to tetrahedral arrangement where they serve as poles of second division.Abbreviations AMS axial microtubule system - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PCP procytokinetic plate - QMS quadripolar microtubule system - TEM transmission electron microscope (microscopy)  相似文献   

16.
Samples of males reveal the presence of a large, mitotically stable supernumerary chromosome in five populations examined. A stable frequency (11.22±0.3%) of male carriers has been observed over nine years in one population. The supernumerary follows closely the condensation cycle and behaviour of the sex chromosome in spermatogonial mitosis and meiosis. A structure simulating a terminalized chiasma frequently joins the precocious sex and supernumerary chromosomes during meiotic prophase; these two chromosomes move preferentially (70%) to opposite poles during the subsequent stages producing a differential transmission of the supernumerary to the two sexes. It is possible that the stable frequency in the population is maintained by a conserved balance between the two sexes without the need of an elimination system. The evidence supports the interpretation that the supernumerary chromosome is partially homologous with the sex chromosome. The possibility that the supernumerary might evolve into a neo-Y chromosome is suggested.  相似文献   

17.
Crossing over during meiotic prophase I is required for sexual reproduction in mice and contributes to genome-wide genetic diversity. Here we report on the characterization of an N-ethyl-N-nitrosourea-induced, recessive allele called mei4, which causes sterility in both sexes owing to meiotic defects. In mutant spermatocytes, chromosomes fail to congress properly at the metaphase plate, leading to arrest and apoptosis before the first meiotic division. Mutant oocytes have a similar chromosomal phenotype but in vitro can undergo meiotic divisions and fertilization before arresting. During late meiotic prophase in mei4 mutant males, absence of cyclin dependent kinase 2 and mismatch repair protein association from chromosome cores is correlated with the premature separation of bivalents at diplonema owing to lack of chiasmata. We have identified the causative mutation, a transversion in the 5′ splice donor site of exon 1 in the mouse ortholog of Human Enhancer of Invasion 10 (Hei10; also known as Gm288 in mouse and CCNB1IP1 in human), a putative B-type cyclin E3 ubiquitin ligase. Importantly, orthologs of Hei10 are found exclusively in deuterostomes and not in more ancestral protostomes such as yeast, worms, or flies. The cloning and characterization of the mei4 allele of Hei10 demonstrates a novel link between cell cycle regulation and mismatch repair during prophase I.  相似文献   

18.
The association of ATR protein with mouse meiotic chromosome cores   总被引:9,自引:0,他引:9  
The ATR (ataxia telangiectasia- and RAD3-related) protein is present on meiotic prophase chromosome cores and paired cores (synaptonemal complexes, SCs). Its striking characteristic is that the protein forms dense aggregates on the cores and SCs of the last chromosomes to pair at the zygotene-pachytene transition. It would appear that the ATR protein either signals delays in pairing or it is directly involved in the completion of the pairing phase. Atm-deficient spermatocytes, which are defective in the chromosome pairing phase, accumulate large amounts of ATR. The behaviour of ATR at meiotic prophase sets it apart from the distribution of the RAD51/DMC1 recombinase complex and our electron microscope observations confirm that they do not co-localize. We failed to detect ATM in association with cores/SCs and we have reported elsewhere that RAD1 protein does not co-localize with DMC1 foci. The expectation that putative DNA-damage checkpoint proteins, ATR, ATM and RAD1, are associated with RAD51/DMC1 recombination sites where DNA breaks are expected to be present, is therefore not supported by our observations. Received: 23 November 1998 / Accepted: 3 January 1999  相似文献   

19.
Summary By making use of the chromosomes of Trillium erectum as a model, potential and actual configurations arising from presumed iso-chromatid and iso-subchromatid unions after irradiation of meiotic or mitotic prophase have been studied and analyzed. Diagrams and photographs of various recognizable types of chromatid or subchromatid rearrangements are presented. A minimum of two iso-chromatid unions within an arm of a single chromosome in meiotic prophase, if separated by a single chiasma, can give rise to a monocentric chromosome with a triplicated segment, the middle portion of which is an inversion. A minimum of two iso-subchromatid breaks within an arm at either meiotic or mitotic prophase also can result in the production of a monocentric chromosome containing a triplicated segment. The stage of appearance of dicentrics or bridges arising from chromatid or subchromatid unions in meiotic prophase is influenced by chiasma number and pattern and by the number of strands per chromosome or chromatid. Some of the rearrangements described may have genetic and evolutionary implication of considerable potential importance which has not been recognized previously.Research carried out at Brookhaven National Laboratory under the auspices of the U.S. Atomic Energy Commission.  相似文献   

20.
Homologous recombination events occurring during meiotic prophase I ensure the proper segregation of homologous chromosomes at the first meiotic division. These events are initiated by programmed double-strand breaks produced by the Spo11 protein and repair of such breaks by homologous recombination requires a strand exchange activity provided by the Rad51 protein. We have recently reported that the absence of AtXrcc3, an ArabidopsisRad51 paralogue, leads to extensive chromosome fragmentation during meiosis, first visible in diplotene of meiotic prophase I. The present study clearly shows that this fragmentation results from un- or mis-repaired AtSpo11-1 induced double-strand breaks and is thus due to a specific defect in the meiotic recombination process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号