首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer of immune complexes from erythrocyte CR1 to mouse macrophages   总被引:8,自引:0,他引:8  
We are developing a potential therapeutic approach for removing pathogens from the circulation of primates in which the pathogen is bound to the complement receptor (CR1) on E using a bispecific mAb complex, a heteropolymer (HP). We have used mAb this approach to demonstrate that cleared prototype pathogens are localized to, phagocytosed in, and destroyed in the liver. Extension of this work to a clinical setting will require a detailed understanding of the mechanism by which the E-bound immune complex substrates are transferred to fixed tissue macrophages in the liver, the transfer reaction. Therefore, we examined an in vitro system to study this process using bacteriophage phiX174 as a model pathogen. E containing phiX174 (bound via an anti-CR1/anti-phiX174 HP) were incubated with P388D1 murine macrophages, and the two cell types were separated by centrifugation through Ficoll. Both E and macrophages were then probed and analyzed by RIA or flow cytometry. The results indicate that all three components of the E-bound IC (phiX174, HP, and CR1) were removed from the E and internalized by the macrophages. We found that transfer requires the Fc portion of IgG, because little transfer of phiX174 occurs when it is bound to E CR1 using a HP containing only Fab fragments. These findings, taken in the context of other studies, suggest a general mechanism for the transfer reaction in which Fc receptors facilitate close juxtaposition of the macrophage to the E-bound IC which then allows a macrophage-associated protease to cleave CR1. The released IC are then internalized and processed by the macrophages.  相似文献   

2.
Platelet activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acetyl-GPC) has been known to have biological effect on cells. The mechanisms of the effect of the potent phospholipid on cells has not been established. We have used 1-O-[3H]alkyl-2-acetyl-GPC [( 3H]PAF) to study the interaction on the isolated membranes of U937 cells. The binding process was time, protein concentration, temperature dependent and reversible. The binding of [3H]PAF to the U937 cell membranes was slightly inhibited by the addition of PAF analogue, 3-O-Hexadecyl-2-acetyl-sn-glycerol-1-phosphorylcholine. U937 cell membranes showed high affinity binding sites for PAF with equilibrium dissociation constant (Kd) of 5 x 10(-9) M. The displacement of bound [3H]PAF with 500-fold excess of nonlabeled PAF was not altered suggesting that the bound [3H]PAF was not degraded during the binding. Binding of [3H]PAF on U937 cell membranes was inhibited by PAF antagonist, 59227RP. The kinetic of the inhibition by PAF antagonist is competitive suggesting that PAF and PAF antagonist bind at the same site.  相似文献   

3.
Abstract

Binding of transferrin (Trf) and its doxorubicin-conjugated forms (Conj) to U937 cells at 0°C were compared using 125I-labelled Trf or Conj. The apparent binding affinity (Ka) of Conj to the surface of U937 cells was (1.9±0.4)·108 1/mol; it is about 40% of that of Trf [(5.0±1.2)· 108 1/mol]. Binding of 125I-labelled ligands was blocked by the unlabelled ligands to the same degree, however, it was not blocked by a great excess of doxorubicin (Dox). N-ethylmaleimide caused about 10% inhibition while dithiothreitol was without effect. Dissociation of 125I-labelled ligands in the presence of different concentrations of unlabelled ligands (Trf and Conj in the all 4 variations) resulted in different R50 values (the concentration of the unlabelled ligand where 50% of the radiolabelled ligand was released). While Trf displaced Trf with an R50 value close to the binding affinity, Conj displacement by Conj occurred with much lower efficiency. The heterolog displacement experiments yielded R50 values inbetween the two extrema. These results suggest that 1) binding of Conj to the surface of cells is  相似文献   

4.
The transformation of macrophages into foam cells is a critical event in the development of atherosclerosis. The most studied aspect of this process is the uptake of modified LDL through the scavenger receptors. Another salient aspect is the effect of modified LDL immune complexes on macrophages activation and foam cell formation. Macrophages internalize oxidized LDL immune complexes (oxLDL-IC) via the Fc-gamma receptor and transform into activated foam cells. In this study we examined the effect of oxLDL-IC on sphingosine kinase 1 (SK1), an enzyme implicated in mediating pro-survival and inflammatory responses through the generation of the signaling molecule sphingosine-1-phosphate (S1P). Intriguingly, oxLDL-IC, but not oxLDL alone, induced an immediate translocation and release of SK1 into the conditioned medium as evidenced by fluorescence confocal microscopy. Immunoblot analysis of cell lysates and conditioned medium revealed a decrease in intracellular SK1 protein levels accompanied by a concomitant increase in extracellular SK1 levels. Furthermore, measurement of S1P formation showed that the activity of cell-associated SK decreased in response to oxLDL-IC compared to oxLDL alone, whereas the activity of SK increased extracellularly. Blocking oxLDL-IC binding to Fc-gamma receptors resulted in decreased levels of extracellular S1P. The data also show that cell survival of human U937 cells exposed to oxLDL-IC increased compared to oxLDL alone. Exogenously added S1P further increased cell survival induced by oxLDL-IC. Taken together, these findings indicate that S1P may be generated extracellularly in response to modified LDL immune complexes and may therefore promote cell survival and prolong cytokine release by activated macrophages.  相似文献   

5.
The single-chain form of human urokinase plasminogen activator (uPA) is the major form of the enzyme found in cells, tissues, and extracellular fluids. The protein, called pro-uPA, has high (Kd = 0.5 nM) affinity for the specific uPA receptor of U937 human monocyte-like cells. Its conversion to two-chain uPA by plasmin does not appreciably change the binding parameters. In addition, conversion of pro-uPA to uPA occurs with receptor-bound pro-uPA and does not lead to dissociation from the membrane. These data show that secreted pro-uPA can find its way to the specific surface receptor without previous conversion to the two-chain form and that, once bound, can be activated by plasmin.  相似文献   

6.
We studied Fc receptor and C3b receptor (CR1) function on U937 cells, a human monocyte cell line. C3b was incorporated into stable soluble heat aggregates of 125I-IgM (A-IgM) and 125I-IgG (A-IgG) by using functionally pure classical pathway components. C3b incorporation was verified by the ability of aggregates to bind to human red cells and by cosedimentation of 125I and 131I during ultracentrifugation. Cell uptake and degradation of A-IgG X C3b was increased up to twofold compared with A-IgG not containing C3b molecules. However, A-IgG X C3b bound to CR1 after Fc receptors were blocked with nonradiolabeled A-IgG were also not endocytosed and catabolized. Moreover, A-IgM X C3b was bound but not degraded by U937 cells. As expected, uptake of A-IgM without C3b was negligible. CR1-mediated binding of A-IgM X C3b was specifically inhibited both by a murine monoclonal antibody against the human CR1 that blocks C3b binding and by C3b oligomers generated by trypsin activation of C3, but not by monoclonal antibodies against the iC3b receptor (CR3). We conclude that CR1 on U937 cells cause increased binding of A-IgG, and this increased binding leads to increased Fc-mediated endocytosis and catabolism of model immune complexes. However, binding of soluble ligands by CR1 alone, even when binding is multivalent, does not lead to endocytosis and degradation of soluble ligands bearing C3b.  相似文献   

7.
Flavonoids are a group of polyphenolic compounds ubiquitously found in plants including fruits, and vegetables. Broad ranges of the biological activities of flavonoids have been reported using in vitro studies. I report that several natural flavonoids blocked glucose uptake in myelocytic U937 cells. Although there were some variations in the blocking activity of individual flavonoids, approximately half of the glucose uptake was blocked by flavonoids at the concentrations of 8-50 microM. The decreasing order of the blocking activity was fisetin >/= myricetin >/= quercetin >/= apigenin > genistein > cyanidin > daidzein >/= hesperetin > naringenin > catechin. Fisetin showed approximately 50% inhibition of glucose uptake at a concentration of 8 microM. Similar patterns of the inhibition were observed in lymphocytic Jurkat cells. Fisetin and quercetin inhibited glucose transport in a competitive manner. K(i) values for fisetin and quercetin were proximately 9 and 12 microM, respectively. This study showed that some types of natural flavonoids block glucose uptake in U937 cells and that natural flavonoids could be used as alternative blockers of glucose uptake in vitro.  相似文献   

8.
Interferons induce morphological, biochemical and functional alterations in monocyte macrophage and myeloid cell lines. We studied the effect of 3 days incubation with gamma-interferon from human buffy coats on the global synthesis of arachidonic acid metabolites by U937 cells. Interferon-induced morphologic changes including cytoplasmic and nuclear changes and the appearance of multiple lysosomal-like granules consistent with cellular differentiation were observed by electron microscopy. The labeling of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine was increased and that of phosphatidylinositol, free fatty acids as 3H-arachidonic acid and neutral lipids reduced, when interferon-treated cells were incubated with 3H-arachidonic acid. Interferon caused qualitative and quantitative changes in the synthesis of cyclooxygenase and lipoxygenase products. A23187, a calcium ionophore, and the tumor promotor, phorbol myristate acetate, greatly increased the synthesis by interferon-differentiated cells of 2 cyclooxygenase products; synthesis of lipoxygenase products was reduced. In the presence of indomethacin, 'shunting' into putative lipoxygenase products occurred. The relationship between interferon-induced morphologic and functional changes, the development of altered phospholipid and eicosanoid metabolism and the identity of these metabolites are yet to be established.  相似文献   

9.
This study aims to determine whether zinc enhances interferon (IFN)-α activity in U937 cells. Type 1 IFN2 receptor (IFNAR2) protein in U937 cells was measured by flow cytometry. After 24 h of exposure to zinc chloride or polaprezinc (a chelate of zinc and l-carnosine) at concentrations ranging from 50 to 200 μM, histograms showing anti-IFNAR2 antibody-positive cells shifted to a higher FITC intensity. Zinc chloride and polaprezinc increased IFNAR2 mRNA levels approximately 30% and 40%, respectively, compared to the control. l-Carnosine alone did not alter IFNAR2 mRNA or protein levels. Cellular levels of 2′–5′ oligoadenylate synthetases (OAS) were markedly increased by IFN-α, and the increase was significantly accelerated by polaprezinc. However, polaprezinc alone did not increase 2′–5′OAS levels. The finding suggests that zinc, especially polaprezinc, enhances the expression of INFAR2 in U937 cells, thereby inducing production of the anti-viral protein 2′–5′OAS.  相似文献   

10.
11.
Our study demonstrates that binding of complement-opsonized HIV to complement receptor type 1 on human erythrocytes (E) via C3b fragments is followed by a rapid normal human serum-mediated detachment of HIV from E. The release was dependent on the presence of factor I indicating a conversion of C3b fragments to iC3b and C3d on the viral surface. This in turn resulted in an efficient binding of opsonized HIV to CR2-expressing B cells, thus facilitating B cell-mediated transmission of HIV to T cells. These data provide a new dynamic view of complement opsonization of HIV, suggesting that association of virus with E might be a transient phenomenon and the factor I-mediated processing of C3b to iC3b and C3d on HIV targets the virus to complement receptor type 2-expressing cells. Thus, factor I in concert with CR1 on E and factor H in serum due to their cofactor activity are likely to be important contributors for the generation of C3d-opsonized infectious HIV reservoirs on follicular dendritic cells and/or B cells in HIV-infected individuals.  相似文献   

12.
The human erythrocyte immune adherence (IA) receptor is the Mr 220,000 type one complement receptor, or CR1. Nonhuman primate IA receptors are comprised of a family of smaller erythrocyte complement receptors (E-CRs) of unknown origin. Recently, the Mr 65,000 baboon E-CR was identified as a glycophosphatidylinositol (GPI)-linked protein encoded by a partially duplicated CR1 gene termed CR1-like. The purpose of this study was to determine the genetic origin of the Mr 75,000 chimpanzee E-CR. Two previously identified cDNAs, an alternative splice product of CR1 termed CR1a and a chimpanzee form of CR1-like, were synthesized and amplified from chimpanzee bone marrow RNA, and transiently expressed in COS-7 cells. By SDS-PAGE, the CR1a protein had a relative mobility slightly greater than chimpanzee E-CR, whereas that of the CR1-like protein was slightly less. Affinity chromatography demonstrated that little chimpanzee CR1a bound to human C3i linked to activated thiol-Sepharose (C3i-ATS), while over 50% of both chimpanzee CR1-like and chimpanzee E-CR bound to C3i-ATS. Treatment with phosphatidylinositol-specific phospholipase C (PIPLC) to assess GPI linkage released E-CR from chimpanzee erythrocytes, and E-CR from cynomolgus monkey erythrocytes. Based on size, ligand-binding specificity, and PIPLC sensitivity, we conclude that the chimpanzee E-CR is encoded by the CR1-like gene. Furthermore, based on PIPLC sensitivity, the cynomolgus monkey E-CR is also likely encoded by a CR1-like sequence. Thus, CR1-like, which is a genetic element of unknown significance in humans, is the gene that encodes the erythrocyte IA receptor of many nonhuman primates.  相似文献   

13.
14.
Recombinant human immune interferon (HuIFN-gamma) was labeled with [gamma-32P]ATP and cyclic-AMP-dependent protein kinase from bovine heart to a specific radioactivity of 11,000 Ci/mmol. At least two molecules of phosphate were incorporated per molecule of interferon. The binding of [32P]HuIFN-gamma to human U937 histiocytic lymphoma cells was time dependent, and displaceable by HuIFN-gamma but not by HuIFN-alpha A or HuIFN-beta. The specific binding was saturable with less than 10% nonspecific binding. The dissociation constant of [32P]HuIFN-gamma for U937 interferon receptors was calculated to be 1.5 X 10(-10) M with a total of 1,800 binding sites/cell. Dissociation of bound [32P]IFN-gamma at 24 degrees C exhibited two distinct rates. A fast dissociation with a specific rate constant of 0.141 min-1, and a slow dissociation with a specific rate constant of 0.0027 min-1. The Kd for [32P]HuIFN-gamma was calculated from kinetic constants to be 5.4 X 10(-10) M.  相似文献   

15.
Severe anemia is a lethal complication of Plasmodium falciparum malaria, particularly in children. Recent studies in children with severe P. falciparum anemia have demonstrated elevated levels of E-bound Abs, reduced E-associated complement receptor 1 (CR1) and decay-accelerating factor (DAF), and pronounced splenic enlargement, suggesting a mechanism for E loss involving Abs, complement, and phagocytosis. Motivated by these reports, we have developed an in vitro model in which human E with Abs and complement bound to CR1, DAF, or glycophorin A are incubated with model human macrophages (the THP-1 cell line). Previous work has demonstrated that immune complex (IC) substrates bound to E CR1, either by an Ab or via C3b, are transferred to macrophages with loss of CR1. In this study, we report that IC bound to DAF or glycophorin A by an Ab linkage are also transferred to macrophages. DAF is lost from the E during the transfer of DAF-bound IC, but the transfer of CR1-bound IC does not lead to a significant loss of DAF. Using glycophorin A-bound IC, we observe competition between transfer of IC and phagocytosis of the E: a fraction (相似文献   

16.
The effect of lidocaine on [3H]choline uptake and the incorporation of label into phosphatidylcholine (PC) in human monocyte-like U937 cells was investigated. Lidocaine inhibited the rate of choline uptake in a dose-dependent manner; at 3·2 mM it resulted in a drastic reduction, by as much as 65 per cent (n = 10; p < 0·0005) or 55 per cent (n = 10; p < 0·0006) in a 3- or 6-h incubation, respectively. Lidocaine also decreased the rate of choline incorporation into PC in a dose-dependent manner. At the highest dose, nearly 70 per cent or 45 per cent reduction was seen in a 3- or 6-h incubation, respectively. Analysis of choline-containing metabolites showed that the major label association with phosphocholine and PC was reduced to a similar extent which was also parallel to the inhibition of choline uptake. At 3·2 mM lidocaine, the reduction of choline uptake was shown to follow a competitive inhibition. In the case of [3H] choline incorporation into PC, the inhibitory pattern was shown to be of a mixed type. The pulse-chase study dissecting the effect on choline metabolism from that on total choline uptake indicated that lidocaine exerted an additionally inhibitory effect on intracellular choline metabolism into PC. In a separate protocol in which the labelled cells were first allowed to be chased until 3H-incorporation into PC reached a steady state, lidocaine no longer showed any effect. These results seem to exclude the possibility of enhanced PC breakdown and further suggest that the main inhibitory effect is on the CDP-choline pathway for PC biosynthesis. After a 3-h treatment, CTP: cholinephosphate cytidylyltransferase (CYT) in both the cytosolic and microsomal fractions was inhibited by approximately 20 per cent, while choline kinase (CK) and choline phosphotransferase (CPT) remain relatively unchanged. There was no evidence for translocation of CYT between cytosol and microsomes. Taken together, we have demonstrated a dual inhibitory function of lidocaine which inhibits PC biosynthesis in addition to its ability to block choline uptake profoundly in U937 cells.  相似文献   

17.
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.  相似文献   

18.
Serglycin is the major proteoglycan in most hematopoietic cells, including monocytes and macrophages. The monoblastic cell line U937-1 was used to study the expression of serglycin during proliferation and differentiation. In unstimulated proliferating U937-1 cells serglycin mRNA is nonconstitutively expressed. The level of serglycin mRNA was found to correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG). The U937-1 cells were induced to differentiate into different types of macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These inducers of differentiation affected the expression of serglycin mRNA in three different ways. The initial upregulation seen in the normally proliferating cells was not observed in PMA treated cells. In contrast, RA increased the initial upregulation, giving a reproducible six times increase in serglycin mRNA level from 4 to 24 h of incubation, compared to a four times increase in the control cells. VitD3 had no effect on the expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG decreased approximately 50% in all three differentiated cell types. Further, the (35S)CSPGs expressed were of larger size in PMA treated cells than controls, but smaller after RA treatment. This was due to the expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated cells, respectively, compared to 11 kDa in the controls. VitD3 had no significant effect on the size of CSPG produced. PMA treated cells secreted 75% of the (35S)PGs expressed, but the major portion was retained in cells treated with VitD3 or RA. The differences seen in serglycin mRNA levels, the macromolecular properties of serglycin and in the PG secretion patterns, suggest that serglycin may have different functions in different types of macrophages.   相似文献   

19.
《Bone and mineral》1989,5(3):323-333
Investigation of the effects of 1,25(OH)2D3 and 24,25(OH)2D3 on the proliferation and differentiation of the human myelomonocytic cell line U937 has been complemented with studies of the effect of the same metabolites on the number of nuclear receptors for 1,25(OH)2D3. Both 1,25(OH)2D3 and 24,25(OH)2D3 inhibit the proliferation of U937 cells in a dose-dependent manner. The concentrations of 24,25(OH)2D3 required to produce this effect were 100-times greater than those of 1,25(OH)2D3. Inhibition of proliferation was associated with increased expression of the CD14 and 200 kDa 63D3 antigens thus confirming differentiation of U937 towards a more mature cell type.Studies of the nuclear receptor for 1,25(OH)2D3 showed that pre-treatment of the cells with 1,25(OH)2D3 resulted in an apparent 40% decrease in the number of detectable 1,25(OH)2D3 receptors as compared to control U937 cells. This is due to the fact that the 1,25(OH)2D3 binds to U937 cell nuclei during culture and thus blocks the subsequent binding of radiolabelled 1,25(OH)2D3 used to measure the number of 1,25(OH)2D3 receptors. Measurement of the binding of unlabelled 1,25(OH)2D3 by radioimmunoassay indicated that pre-treatment of the cells with 1,25(OH)2D3 increased the capacity of U937 to bind the hormone, although measurement of these receptors by whole cell assay was prevented by the binding of 1,25(OH)2D3 itself. This effect was not observed with 24,25(OH)2D3 which was more easily displaced from binding sites by radiolabelled 1,25(OH)2D3 and it appears to act through low affinity binding to the 1,25(OH)2D3 receptor.  相似文献   

20.
Interaction of 125I-labeled human antithrombin III (125I-AT III) X protease complexes with bovine corneal endothelial cells has been studied in tissue culture. 125I-AT III does not bind to endothelial cells, but its complexes with either thrombin or trypsin bind specifically to the cultures. The binding of 125I-AT III X protease complexes is not via the moiety of the free antithrombin III (AT III) or the free protease, since neither AT III nor thrombin compete on the binding of 125I-AT III X thrombin complexes. Only unlabeled AT III X thrombin complexes compete on the binding of the iodinated ligand. 125I-AT III X trypsin complexes bind with a KD of 1.4 X 10(-7) M to high affinity-binding sites present on the cell surface of corneal endothelial cells. Saturation of binding to the cell surface is observed at a concentration of 2.5 X 10(-7) M 125I-AT III X trypsin complexes and the number of binding sites per cell is about 4 X 10(4). The cell surface binding reaches a maximum by 15 min and then decreases with time. The cells, when incubated at 37 degrees C, appear to internalize the bound complexes by adsorptive endocytosis which proceeds at a rate of 0.5-0.8 pmole/1 X 10(6) cells/h. The internalization process of 125I-AT III X protease complexes is saturated at a concentration of 2.5 X 10(-7) M. Since the cells release 125I-labeled material into the extracellular media which cannot be precipitated by trichloroacetic acid (TCA), it probably represents degradation of 125I-AT III X protease complexes into small fragments at a linear rate of about 0.5 pmole/1 X 10(6) cells/h. The described process of AT III X protease complexes binding, internalization and subsequent degradation by corneal endothelial cells may represent a clearing mechanism for extracellular AT III X protease complexes formed under pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号