首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of benzyl cyanide analogs have been studied as substrates and inhibitors of dopamine beta-hydroxylase to extend our initial report (Baldoni, J. M., and Villafranca, J. J. (1980) J. Biol. Chem. 255, 8987-8990) which showed that p-hydroxybenzyl cyanide was a suicide substrate of dopamine beta-hydroxylase. Thus, the appVmax values for benzyl cyanide analogs decrease in the order p-OH greater than m-OH greater than H much greater than p-OCH3,m-OCH3; the m-OH, m-OCH3 and p-OCH3 analogs are competitive inhibitors versus tyramine in initial velocity studies. The Vmax values for tyramine and p-hydroxybenzyl cyanide are nearly identical at saturating O2 and ascorbate (pH 5.0, 37 degrees C) but the Km for O2 is 0.14 and 2.8 mM, respectively, with tyramine and p-hydroxybenzyl cyanide. Studies of the pH dependence of log V/K for tyramine show two pKa values of 5.2 and 5.8 while for m-hydroxybenzyl cyanide the values are 5.3 and 5.9. The log Vmax profile shows one pKa of 5.9 with tyramine as substrate. Thus, nearly identical enzymic groups are involved in binding and/or catalysis with these two substrates. All the benzyl cyanide analogs are suicide inactivators of dopamine beta-hydroxylase. With m-hydroxybenzyl cyanide, the partition between catalysis and inactivation (kcat/kinact) changed from approximately 600 to approximately 17 as the pH varied from 5.0 to 6.7. The log kinact versus pH profile shows one pKa value of 6.0, suggesting that an enzymic group must be deprotonated for maximal inactivation. Copper was essential for the suicide inactivation of dopamine beta-hydroxylase by benzyl cyanides and kinetic studies of partially inhibited dopamine beta-hydroxylase (approximately 50%) showed that inactive enzyme molecules were completely inactive. The following papers in this series discuss the partial reactivation of suicide-inhibited dopamine beta-hydroxylase and the stoichiometry of inactivation by benzyl cyanide analogs.  相似文献   

3.
Dopamine beta-hydroxylase (3,4- dihydroxyphenylethylamine ,ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1) is the terminal enzyme in the biosynthetic pathway of norepinephrine. Chemical modification studies of this enzyme were executed to investigate contributions of specific amino-acid side-chains to catalytic activity. Sulfhydryl reagents were precluded, since no free cysteine residue was detected upon titration of the denatured or native protein with 2-chloromercuri-4-nitrophenol. Incubation of enzyme with diazonium tetrazole caused inactivation of the protein coupled with extensive reaction of lysine and tyrosine residues. Reaction with iodoacetamide resulted in complete loss of enzymatic activity with reaction of approximately three histidine residues; methionine reaction was also observed. Modification of the enzyme using diethylpyrocarbonate resulted in complete inactivation of the enzyme, and analysis of the reacted protein indicated a loss of approx. 1.7 histidine residues per protein monomer with no tyrosine or lysine modification observed. The correlation of activity loss with histidine modification supports the view that this residue participates in the catalytic function of dopamine beta-hydroxylase.  相似文献   

4.
Mechanism-based inhibitors of dopamine beta-hydroxylase   总被引:2,自引:0,他引:2  
The copper-containing monooxygenase dopamine beta-hydroxylase catalyzes the hydroxylation of dopamine at the benzylic position to form norepinephrine. Mechanism-based inhibitors for dopamine beta-hydroxylase have been used as probes of the mechanism of catalysis. The variety of such inhibitors that have been developed for this enzyme can be divided into three groups: (i) those in which the inactivating species is formed by abstraction of a hydrogen atom to form a radical intermediate; (ii) those in which the inactivating species is formed by abstraction of an electron to form an epoxide-like intermediate; and (iii) those in which the product is the inactivating species. A mechanism consistent with inactivation by all three groups of inhibitors which proposes that hydroxylation of dopamine by dopamine beta-hydroxylase involves formation of a benzylic radical has been developed. The benzylic radical is formed by abstraction of a hydrogen atom from the substrate by a high-potential copper-oxygen species.  相似文献   

5.
A modified purification procedure has been developed for dopamine beta-hydroxylase isolated from bovine adrenal medulla. Catalase is included in the homogenization step starting with a suspension of either chromaffin granules or adrenal medulla tissue. With this precaution, the enzyme remains stable in the supernatant solution in preparation for the subsequent purification step involving concanavalin A-Sepharose chromatography. The homogeneous enzyme has a specific activity in the range of 60-70 mumol O2 consumed/min/mg. Using radiolabeled metal ion chelators, it was determined that several of the chelators remained tightly bound to the enzyme after removal of the copper leading to difficulties in establishing stoichiometry of enzyme-bound metal ions.  相似文献   

6.
1. Methods of determining the order of addition of substrates and dissociation of products by using flux ratios are investigated. Where an enzyme obeys hyperbolic steady-state velocity kinetics it is concluded that it may be particularly useful to compare the measured flux ratios with those calculated from the steady-state velocity parameters. 2. An expression is derived relating the relative contribution of the two pathways in a branched pathway to the flux ratios. 3. The relationship of equilibrium-reaction-rate measurements [Boyer & Silverstein (1963) Acta Chem. Scand. 17, Suppl. 1, S195] to the flux ratios is considered. Equilibrium-reaction rates are shown to be affected both by the addition of substrates and dissociation of products. Methods of analysing the data to distinguish between these events are discussed. 4. Methods of measurement of flux ratios are described, and it is concluded that the non-equilibrium steady-state method is preferable to measurements at chemical equilibrium. 5. The relative significance of flux ratio measurements and steady-state velocity inhibition data is discussed. It is concluded that flux ratios, when taken in conjunction with the inhibition data, provide the least ambiguous information about mechanism.  相似文献   

7.
Linkage analysis of the human dopamine beta-hydroxylase gene   总被引:2,自引:0,他引:2  
The human gene for dopamine beta-hydroxylase (D beta H) has been mapped to chromosome 9q34. Using polymerase chain reaction amplification of exon 11 of the D beta H gene followed by digestion of the reaction products with FnuDII (BstUI), we detected a low-frequency restriction fragment length polymorphism (RFLP). The CEPH panel of family DNAs was genotyped for this RFLP, enabling us to determine the linkage relationships between D beta H and four other loci previously mapped to human chromosome 9q. We obtained two-point recombination frequencies (theta) between D beta H and arginosuccinate synthetase (theta = 0, LOD = 7.37), the ABO blood group locus (theta = 0, LOD = 4.5), CRI-P111 (theta = 0, LOD = 2.1), and D9S31 (theta = .06, LOD = 2.81).  相似文献   

8.
We have shown that purified bovine soluble dopamine beta-hydroxylase can reconstitute onto preformed phosphatidylserine containing vesicles. The binding is dependent on pH and vesicle phosphatidylserine composition but does not require calcium. Reconstitution appears to be irreversible, with the lipid-bound enzyme possessing hydroxylase activity. Additionally, [14C] phosphatidylserine binds to soluble dopamine beta-hydroxylase and remains bound after several detergent washes. Thus the reconstituted soluble form of the enzyme appears to be functionally analogous to the membranous form. Both the reconstitution data and the lipid binding data suggest that multiple phosphatidylserine molecules bind to the soluble hydroxylase. We propose that noncovalently bound phosphatidylserine moieties, which copurify with the membrane bound form of the enzyme, alone are responsible for anchoring membranous dopamine beta-hydroxylase to chromaffin granule and model membranes.  相似文献   

9.
An acetylenic mechanism-based inhibitor of dopamine beta-hydroxylase   总被引:1,自引:0,他引:1  
The catalytic action of dopamine beta-hydroxylase on 1-phenyl-1-propyne results in concomitant loss of enzyme activity. At pH 5.5 and 25 degrees C, 1-phenyl-1-propyne inactivates dopamine beta-hydroxylase in a mechanism-based fashion. The inactivation rate is first-order, follows saturation kinetics, and is strictly dependent on catalysis (oxygen and ascorbate are essential). The inactivation rate of saturating 1-phenyl-1-propyne (kinact) increases from 0.08 to 0.22 min-1 when the oxygen saturation increases from 21 to 100%, respectively. Inactivation also requires a copper-containing catalytically competent enzyme. Tyramine and norepinephrine (respectively, substrate and product of the normal catalytic reaction) protect against inactivation, and no regain of enzyme activity occurs after prolonged dialysis. Experiments with ether-extracted incubation solutions (+/- enzyme) showed no difference in their gas chromatography-mass spectral patterns implying that inactivation of dopamine beta-hydroxylase by 1-phenyl-1-propyne occurs through a kinetic process with a partition ratio (kcat/kinact) equal to or near 1. Thus, this acetylenic substrate analog appears to be a very efficient mechanism-based inhibitor of dopamine beta-hydroxylase. We propose that inactivation of this enzyme by 1-phenyl-1-propyne proceeds by formation of a reactive intermediate that occurs prior to product formation and that alkylates an amino acid residue at the active site of the enzyme.  相似文献   

10.
A modification of the conventional dopamine β-hydroxylase (DBH) (EC 1.14.2.1) assay is accomplished by the inclusion of adenosylhomocysteinase (EC 3.3.1.1.) and adenosine deaminase (EC 3.5.4.4.) into the phenylethanolamine N-methyltransferase (PNMT) (EC 2.1.1.) medium used to estimate octopamine. S-adenosylhomocysteine, (SAH), the second product of PNMT formed during the methylation of octopamine, is found to inhibit PNMT. The addition of adenosylhomocysteinase and adenosine deaminase removes SAH from the medium and increases the accuracy of DBH assay system.  相似文献   

11.
12.
Incubation of cardiac sarcolemma in the presence of dopamine beta-hydroxylase (DBH), a catecholamine biosynthetic enzyme, increased beta-adrenergic receptor density by 68% as measured by [3H]dihydroalprenolol (DHA) binding. The addition of DBH to plasma membranes isolated from brain, kidney, skeletal muscle, liver and intestine did not alter [3H]DHA binding. Cardiac alpha-receptors were unaffected under similar conditions. Since DBH is coreleased with norepinephrine, these results indicate that a functional coupling of the putative beta-adrenergic receptor with DBH may exist in cardiac muscle.  相似文献   

13.
1-2H-Phthalazine hydrazone (hydralazine; HYD), 2-1H-pyridinone hydrazone (2-hydrazinopyridine; HP), 2-quinoline-carboxylic acid (QCA), 1-isoquinolinecarboxylic acid (IQCA), 2,2'-bi-1H-imidazole (2,2'-biimidazole; BI), and 1H-imidazole-4-acetic acid (imidazole-4-acetic acid; IAA) directly and reversibly inhibit homogeneous soluble bovine dopamine beta-hydroxylase (3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1). HYD, QCA and IAA show competitive allosteric inhibition of dopamine beta-hydroxylase with respect to ascorbate (Kis = 5.7(+/- 0.9) microM, 0.14(+/- 0.03) mM, 0.80(+/- 0.20) mM; nH = 1.4(+/- 0.1), 1.8(+/- 0.4), 2.8(+/- 0.6), respectively). HYD and IAA show slope and intercept mixed-type allosteric inhibition of dopamine beta-hydroxylase with respect to tyramine. QCA shows allosteric uncompetitive inhibition of dopamine beta-hydroxylase with respect to tyramine. HP, BI and IQCA all show linear competitive inhibition (Kis = 1.9(+/- 0.3) microM, 21(+/- 6) microM, and 0.9(+/- 0.3) microM, respectively) with respect to ascorbate. HP and BI show linear mixed-type while IQCA shows linear uncompetitive inhibition of dopamine beta-hydroxylase with respect to tyramine. In the presence of HP, HYD or IAA intersecting double-reciprocal plots of the initial velocity as a function of tyramine concentration at differing fixed levels of ascorbate are observed. These findings are consistent with a uni-uni-ping-pong-ter-bi kinetic mechanism for dopamine beta-hydroxylase that involves a ternary enzyme-ascorbate-tyramine-oxygen complex. The results for HYD, QCA and IAA are the first examples of allosteric inhibitor interactions with dopamine beta-hydroxylase.  相似文献   

14.
Dopamine beta-hydroxylase (D beta H) (EC 1.14.17.1) from adrenal medulla is a glycoprotein with approximately 5% carbohydrate by weight. The oligosaccharide chains of this enzyme were enzymatically removed with various glycosidic enzymes (endoglycosidases D, F, and H; glycopeptidase F; alpha-mannosidase; neuraminidase; and beta-galactosidase). The time course of deglycosylation was monitored by polyacrylamide gel electrophoresis, and evidence for sugar removal was shown by a modification of the Western blot technique utilizing 125I-labeled concanavalin A and by amino acid analysis. Protein was detected in the gel by using specific antibodies and 125I-labeled protein A. Steady-state kinetic data of deglycosylated D beta H show minor differences between the native and the deglycosylated protein. The Km values for tyramine were 2.17 and 1.66 mM whereas the Km values for oxygen were 0.18 and 0.14 mM for the native and the deglycosylated protein, respectively. The Vmax values (pH 5.0) for the two forms of the enzyme were comparable, with the deglycosylated D beta H being 15% lower. These data indicate that the oligosaccharide moieties present on D beta H do not play a role in catalysis.  相似文献   

15.
Fifty-eight tryptic and Staphylococcus aureus V8 protease generated peptides from bovine dopamine beta-hydroxylase were isolated by reverse-phase high pressure liquid chromatography and sequenced. These peptide sequences were compared with the deduced amino acid sequences of bovine and human dopamine beta-hydroxylase obtained from the cloned cDNAs. Bovine peptide sequences had five differences with the sequence derived from the bovine cDNA, and four of the changes could be accounted for by a single base change in the DNA. N-terminal sequence analysis of the bovine enzyme indicated that it contained two N termini, one of which is 3 amino acids longer than the other and begins with the sequence Ser-Ala-Pro. The amino acid sequences deduced from the bovine and human cDNAs are 19 and 25 amino acids longer, respectively, and these additional amino acids represent leader peptide sequences. Two bovine peptide sequences contained glycosylation sites and gave positive tests for carbohydrate residues, and two others contained the consensus sequence for a glycosylation site but were negative in the carbohydrate test. The bovine enzyme contains 6 Trp, as compared with 7 in the bovine cDNA and 8 in the human cDNA. The protein and bovine cDNA contain 24 Tyr each, as compared with 26 in the human cDNA. These numbers indicate that the true epsilon 1% 280 = 8.95, and, therefore, that it is 28% lower than the previously determined value. The data also identify 5 His-containing regions that may be involved in Cu2+ coordination at the active site.  相似文献   

16.
Dopamine beta-hydroxylase is present in the bovine adrenal medulla in two forms, soluble and membrane bound. Previous isolation procedures for the membranous hydroxylase have resulted in a form of enzyme identical in subunit structure with the soluble type. We report here the isolation of a membrane-bound form of dopamine beta-hydroxylase which is structurally different from the soluble form. The isolated membranous enzyme has a large apparent molecular weight on gel filtration, is amphiphilic, and contains bound phospholipid which is predominantly phosphatidylserine. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate shows that the membranous hydroxylase contains two nonidentical subunits under both reducing and nonreducing conditions. Under reducing conditions the apparent molecular weights of the two subunits are 70,000 and 75,000 and both contain carbohydrate. The purified membranous hydroxylase binds to phospholipid vesicles and chymotryptic digestion of the bound enzyme suggests that two forms of the membranous hydroxylase exist.  相似文献   

17.
Rat adrenal gland levels of dopamine beta-hydroxylase are subject to dual control. Activation of the splanchnic nerves to the adrenal medulla by reserpine induces the synthesis of dopamine beta-hydroxylase without altering the rate of enzyme degradation. In contrast, hypophysectomy causes a decline in steady state dopamine beta-hydroxylase levels by first accelerating the rate of degradation, then by slowing the rate of enzyme synthesis as well. Adrenocorticotropic hormone administration partially reversed the effect of hypophysectomy on dopamin beta-hydroxylase degradation. These findings suggest that the trans-synaptic factors controlling dopamine beta-hydroxylase induction act by a different mechanism (enzyme synthesis) than the hormonal controls regulating steady state levels (enzyme degradation). Thus, active inhibition of enzyme degradation may be an important control in maintenance of steady state enzyme levels.  相似文献   

18.
19.
20.
Dopamine beta-hydroxylase is inactivated by phenyl-, phenethyl-, benzyl-, and methylhydrazine, but not by hydrazine itself. With phenyl-, methyl-, and phenethylhydrazine, the rate of inactivation decreases in the presence of ascorbate and increases in the presence of tyramine. Reduction of the enzyme-bound copper occurs with all of the hydrazines tested. In the presence of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone the carbon-centered radicals generated from each compound are trapped. This is consistent with reduction of the enzyme-bound copper by the hydrazine-containing compounds, resulting in formation of the hydrazine cation radical. Homolytic cleavage of the carbon-nitrogen bond then generates a carbon-centered radical which reacts with the enzyme, resulting in inactivation. Inactivation with [14C]phenylhydrazine results in the incorporation of 0.94 molecule of label per enzyme subunit. Benzylhydrazine behaves as a mechanism-based inhibitor of the enzyme. Both benzyl- and phenethylhydrazine are substrates for dopamine beta-hydroxylase. The second-order rate constant for inactivation of dopamine beta-hydroxylase by benzylhydrazine in the presence of ascorbate is increased about 4-fold when the benzylic hydrogens are replaced with deuterium. The apparent Vmax shows an observed deuterium kinetic isotope effect of 13 +/- 2. The partition ratio for product formation versus inactivation is 11-fold less for alpha,alpha-d2-benzylhydrazine. These results are interpreted in terms of a model where inactivation is due to abstraction of an electron from nitrogen instead of abstraction of a hydrogen atom from the benzylic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号