首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After induction of a perivenous liver cell necrosis by CCl4 pretreatment of the rat, ammonia uptake by perfused liver is decreased. This was due to an inhibition of glutamine synthesis from added ammonia, whereas urea synthesis was not affected by CCl4 pretreatment. The data confirm recent findings on hepatocyte heterogeneity in ammonia metabolism and are explained by an impairment of perivenous glutamine synthetase, but not of periportal urea synthesis, by the perivenous liver cell necrosis induced by CCl4. Regarding the pathogenesis of hyperammonemia in acute severe liver disease like CCl4 poisoning, the data point to a role of an impaired glutamine synthesis, but not to an impairment of urea synthesis.  相似文献   

2.
1. The metabolism of glutamine and ammonia was studied in isolated perfused rat liver in relation to its dependence on the direction of perfusion by comparing the physiological antegrade (portal to caval vein) to the retrograde direction (caval to portal vein). 2. Added ammonium ions are mainly converted to urea in antegrade and to glutamine in retrograde perfusions. In the absence of added ammonia, endogenously arising ammonium ions are converted to glutamine in antegrade, but are washed out in retrograde perfusions. When glutamine synthetase is inhibited by methionine sulfoximine, direction of perfusion has no effect on urea synthesis from added or endogenous ammonia. 3. 14CO2 production from [1-14C]glutamine is higher in antegrade than in retrograde perfusions as a consequence of label dilution during retrograde perfusions. 4. The results are explained by substrate and enzyme activity gradients along the liver lobule under conditions of limiting ammonia supply for glutamine and urea synthesis, and they are consistent with a perivenous localization of glutamine synthetase and a predominantly periportal localization of glutaminase and urea synthesis. Further, the data indicate a predominantly periportal localization of endogenous ammonia production. The results provide a basis for an intercellular (as opposed to intracellular) glutamine cycling and its role under different metabolic conditions.  相似文献   

3.
It has been proposed that key enzymes of ureagenesis and the alanine aminotransferase activity predominate in periportal hepatocytes. However, ureagenesis from alanine, when measured in the perfused liver, did not show periportal predominance and even the release of the direct products of alanine transformation, lactate and pyruvate, was higher in perivenous cells. An alternative way of analyzing the functional distributions of alanine aminotransferase and the urea cycle along the hepatic acini would be to measure alanine and urea production from precursors such as lactate or pyruvate plus ammonia. In the present work these aspects were investigated in the bivascularly perfused rat liver. The results of the present study confirm that gluconeogenesis and the associated oxygen uptake tend to predominate in the periportal region. Alanine synthesis from lactate and pyruvate plus ammonia, however, predominated in the perivenous region. Furthermore, no predominance of ureagenesis in the periportal region was found, except for conditions of high ammonia concentrations plus oxidizing conditions induced by pyruvate. These observations corroborate the view that data on enzyme activity or expression alone cannot be extrapolated unconditionally to the living cell. The current view of the hepatic ammonia-detoxifying system proposes that the small perivenous fraction of glutamine synthesizing perivenous cells removes a minor fraction of ammonia that escapes from ureagenesis in periportal cells. However, since urea synthesis occurs at high rates in all hepatocytes with the possible exclusion of those cells not possessing carbamoyl-phosphate synthase, it is probable that ureagenesis is equally important as an ammonia-detoxifying mechanism in the perivenous region.  相似文献   

4.
The molecular mechanisms by which liver genes are differentially expressed along a portocentral axis, allowing for metabolic zonation, are poorly understood. We provide here compelling evidence that the Wnt/beta-catenin pathway plays a key role in liver zonation. First, we show the complementary localization of activated beta-catenin in the perivenous area and the negative regulator Apc in periportal hepatocytes. We then analyzed the immediate consequences of either a liver-inducible Apc disruption or a blockade of Wnt signaling after infection with an adenovirus encoding Dkk1, and we show that Wnt/beta-catenin signaling inversely controls the perivenous and periportal genetic programs. Finally, we show that genes involved in the periportal urea cycle and the perivenous glutamine synthesis systems are critical targets of beta-catenin signaling, and that perturbations to ammonia metabolism are likely responsible for the death of mice with liver-targeted Apc loss. From our results, we propose that Apc is the liver "zonation-keeper" gene.  相似文献   

5.
The present study is concerned with the effects of L-arginine hydrochloride administration on the disturbances of liver glutamine metabolism following acute ammonia intoxication in the rat. Our results show that arginine administration does not suppress the decrease in the hepatic glutamine level and the marked activation of liver glutaminase I induced by ammonia. These alterations do not therefore appear to be related to the limitation of ammonia detoxication through the urea cycle.  相似文献   

6.
Hepatic transport and metabolism of glutamate and glutamine are regulated by intervention of several proteins. Glutamine is taken up by periportal hepatocytes and is the major source of ammonia for urea synthesis and glutamate for N-acetylglutamate (NAG) synthesis, which is catalyzed by the N-acetylglutamate synthase (NAGS). Glutamate is taken up by perivenous hepatocytes and is the main source for the synthesis of glutamine, catalyzed by glutamine synthase (GS). Accumulation of glutamate and ammonia is a common feature of chronic liver failure, but mechanism that leads to failure of the urea cycle in this setting is unknown. The Farnesoid X Receptor (FXR) is a bile acid sensor in hepatocytes. Here, we have investigated its role in the regulation of the metabolism of both glutamine and glutamate. In vitro studies in primary cultures of hepatocytes from wild type and FXR(-/-) mice and HepG2 cells, and in vivo studies, in FXR(-/-) mice as well as in a rodent model of hepatic liver failure induced by carbon tetrachloride (CCl(4)), demonstrate a role for FXR in regulating this metabolism. Further on, promoter analysis studies demonstrate that both human and mouse NAGS promoters contain a putative FXRE, an ER8 sequence. EMSA, ChIP and luciferase experiments carried out to investigate the functionality of this sequence demonstrate that FXR is essential to induce the expression of NAGS. In conclusion, FXR activation regulates glutamine and glutamate metabolism and FXR ligands might have utility in the treatment of hyperammonemia states.  相似文献   

7.
It is now apparent that many of the subtleties of cellular metabolism are intrinsically associated with cell structure and that their physiological study requires techniques that respect the integrity of cells and organs. We have used 15N-substrates to examine urea synthesis in the intact perfused rat liver. This work permits us to determine the extent to which different amino acids donate nitrogen atoms to the two nitrogens of urea. It is apparent that alanine and the amino group of glutamine provide nitrogen for urea synthesis primarily via cytoplasmic aspartate, whereas mitochondrial ammonia is the preferred route of entry for nitrogen from pre-formed ammonia or from the amide nitrogen of glutamine. Most importantly, this methodology permits us to explore for the occurrence of metabolic channels in such a highly organised, physiological system. Our studies indicate that a metabolic channel does not exist between glutaminase and carbamoylphosphate synthetase 1.  相似文献   

8.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

9.
Perfusion of rat liver had led to the suggestion that oxygen tension, rather than the distribution of enzymes of urea synthesis, plays a key role in the regulation of urea synthesis in the periportal and pericentral areas of the liver lobule [F. W. Kari, H. Yoshihara and R. G. Thurman (1987) Eur. J. Biochem. 163, 1-7]. We have directly tested the effect of oxygen concentration on ureogenesis under steady-state conditions in isolated hepatocytes perifused with physiological concentrations of ammonia. We found that ureogenesis is independent of the oxygen concentration. Only at oxygen concentrations below 25 microM (which is below the oxygen concentration in liver) was urea synthesis decreased. This was because insufficient production of ATP led to decreased flux through carbamoyl-phosphate synthase. It is concluded that oxygen does not control urea synthesis.  相似文献   

10.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

11.
A large amount of ammonia is produced in the rumen and some portion of the ammonia are absorbed into the portal blood through the rumen mucosa. Accordingly, it seems that ammonia detoxication is more necessary for the ruminant than for the non-ruminant. Activities of the urea cycle enzymes as principal instrument for ammonia detoxication in goat were investigated in this experiment.

The activities of the urea cycle enzymes of goat were found to be very similar to those of rat reported by other authors. The activities of the urea cycle enzymes were affected by the protein level of diet. Administration of magnesium aspartate increased the activities of argininosuccinate synthetase and arginase, and had some effect on the concentrations of citrulline, aspartic acid, and urea in the liver.  相似文献   

12.
Increased blood ammonia was induced in fasting mice by ip administration of 200 mg/kg Na-valproate followed 1 h later by 13 and 4 mmol/kg alanine and ornithine, respectively. When valproate was not used blood or liver ammonia was not increased, but increases were observed in liver glutamate (5-fold), glutamine (2-fold), aspartate (5-fold), acetylglutamate (15-fold), citrulline (35-fold), argininosuccinate (11-fold), arginine (11-fold), and urea (3-fold). The level of carbamoyl phosphate (less than 2 nmol/g) was, by far, the lowest of all urea cycle intermediates. The large increase in citrulline indicates that argininosuccinate synthesis was limiting, and that the increase in acetylglutamate induced a considerable activation of carbamoyl phosphate synthetase, which agrees with theoretical expectations, irrespective of the actual KD value for acetylglutamate. Pretreatment with valproate resulted in lower hepatic levels of glutamate, glutamine, aspartate, acetyl-CoA, and acetylglutamate. At the level found of acetylglutamate the activation of carbamoyl phosphate synthetase would be expected to be similar to that without valproate. Indeed, the levels of citrulline were similar with or without valproate. Argininosuccinate, arginine, and urea levels exhibited little if any change. Although the model used may not replicate exactly the situation in patients, from our results it appears that changes in citrullinogenesis or in other steps of the urea cycle do not account for the increase in blood ammonia induced by valproate, and it is proposed that valproate may alter glutamine metabolism.  相似文献   

13.
The liver contains two systems for the removal of ammonia - the urea cycle and the enzyme glutamine synthetase. These systems are expressed in a complementary fashion in two distinct populations of hepatocytes, referred to as periportal and perivenous cells. One of the unresolved problems in hepatology has been to elucidate the molecular mechanisms responsible for induction and maintenance of the cellular heterogeneity for ammonia detoxification. There is now a potential molecular explanation for the zonation of the urea cycle and glutamine synthetase based on the Wnt/beta-catenin pathway.  相似文献   

14.
This study examines the role of glucagon and insulin in the incorporation of (15)N derived from (15)N-labeled glutamine into aspartate, citrulline and, thereby, [(15)N]urea isotopomers. Rat livers were perfused, in the nonrecirculating mode, with 0.3 mM NH(4)Cl and either 2-(15)N- or 5-(15)N-labeled glutamine (1 mM). The isotopic enrichment of the two nitrogenous precursor pools (ammonia and aspartate) involved in urea synthesis as well as the production of [(15)N]urea isotopomers were determined using gas chromatography-mass spectrometry. This information was used to examine the hypothesis that 5-N of glutamine is directly channeled to carbamyl phosphate (CP) synthesis. The results indicate that the predominant metabolic fate of [2-(15)N] and [5-(15)N]glutamine is incorporation into urea. Glucagon significantly stimulated the uptake of (15)N-labeled glutamine and its metabolism via phosphate-dependent glutaminase (PDG) to form U(m+1) and U(m+2) (urea containing one or two atoms of (15)N). However, insulin had little effect compared with control. The [5-(15)N]glutamine primarily entered into urea via ammonia incorporation into CP, whereas the [2-(15)N]glutamine was predominantly incorporated via aspartate. This is evident from the relative enrichments of aspartate and of citrulline generated from each substrate. Furthermore, the data indicate that the (15)NH(3) that was generated in the mitochondria by either PDG (from 5-(15)N) or glutamate dehydrogenase (from 2-(15)N) enjoys the same partition between incorporation into CP or exit from the mitochondria. Thus, there is no evidence for preferential access for ammonia that arises by the action of PDG to carbamyl-phosphate synthetase. To the contrary, we provide strong evidence that such ammonia is metabolized without any such metabolic channeling. The glucagon-induced increase in [(15)N]urea synthesis was associated with a significant elevation in hepatic N-acetylglutamate concentration. Therefore, the hormonal regulation of [(15)N]urea isotopomer production depends upon the coordinate action of the mitochondrial PDG pathway and the synthesis of N-acetylglutamate (an obligatory activator of CP). The current study may provide the theoretical and methodological foundations for in vivo investigations of the relationship between the hepatic urea cycle enzyme activities, the flux of (15)N-labeled glutamine into the urea cycle, and the production of urea isotopomers.  相似文献   

15.
At high systemic blood concentrations ammonia may be partially deviated into the pathway of pyrimidine synthesis, as has been observed in different genetic defects of the urea cycle. The portacaval shunt (PCS) rat presents an animal model to study ammonia detoxication without an underlying enzyme defect in the urea cycle. Since ammonia may induce a deviation into the pyrimidine pathway by influencing enzymatic reactions involved in this pathway, the activity of carbamylphosphate synthetase and aspartate transcarbamylase in liver as well as the excretion of orotic acid in the urine were measured in rats 10, 20 and 30 days after PCS. The results suggest that in this experimental model ammonia may be channeled into the pyrimidine pathway leading to a stimulation of the first enzymatic step and to an increased excretion of orotic acid.  相似文献   

16.
The urea cycle was evaluated in perfused livers isolated from cachectic tumor-bearing rats (Walker-256 tumor). Urea production in livers of tumor-bearing rats was decreased in the presence of the following substrates: alanine, alanine + ornithine, alanine + aspartate, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine. Urea production from arginine was higher in livers of tumor-bearing rats. No difference was found with aspartate, aspartate + ammonia, citrulline, citrulline + aspartate and glutamine + aspartate. Ammonia consumption was smaller in livers from cachectic rats when the substance was infused together with lactate and pyruvate. Glucose production was smaller in the cachectic condition only when alanine was the gluconeogenic substrate. Blood urea was higher in tumor-bearing rats, suggesting higher rates of urea production. The availability of aspartate seems to be critical for urea synthesis in the liver of tumor-bearing rats, which is possibly unable to produce this amino acid in sufficient amounts from endogenous sources. The liver of tumor-bearing rats may have a different exogenous substrate supply of nitrogenous compounds. Arginine could be one of these compounds in addition to aspartate which seems to be essential for an efficient ureogenesis in tumor-bearing rats.  相似文献   

17.
A simple method which avoids the use of perfusion with calcium free buffer, hydrolytic enzymes and detergents has been developed to obtain fresh hepatocytes from periportal and pericentral regions of the liver lobule. Cylindrical plugs (200 x 500 microns) of periportal and pericentral areas of the rat liver lobule weighing about 1 mg were collected with a micropunch from fresh or perfused liver. Ninety percent of cells were intact as assessed from trypan blue staining. Glutamine synthetase activity was detected predominantly (ca. 85%) in plugs isolated from pericentral regions indicating that this method allows selective harvesting of pure sublobular zones of the liver lobule. Rates of oxygen uptake measured at 25 degrees C by plugs from livers perfused in the anterograde direction were 56 +/- 5 and 33 +/- 7 mumol/g/h by periportal and pericentral plugs, respectively, values similar to data obtained from the intact organ. This method provides new opportunities to study the regulation of basic metabolic processes in cells from sublobular areas under nearly physiological conditions.  相似文献   

18.
Periportal and perivenous hepatocytes from rat liver were isolated by combined digitonin-collagenase perfusion, and gluconeogenesis, urea synthesis and fatty acid synthesis was measured both in freshly isolated cells and in primary culture. A periportal zonation of gluconeogenesis and urea synthesis of about 3 and 1.5 fold, respectively, was observed. This zonation persisted unchanged for 23 hours in culture under identical conditions of incubation for periportal and perivenous cells. Fatty acid synthesis was not zonated.  相似文献   

19.
用大鼠肝脏门静脉或肝静脉周围的肝细胞来研究葡萄糖和酮体生成的区域分布。肝细胞通过毛地黄皂苷-胶原酶灌流技术分离。门静脉周围肝细胞的γ谷氨酰转肽酶的活性比肝静脉周围肝细胞高2.4倍;而谷氨酰胺合成酶的活性则相反,肝静脉周围肝细胞高出56倍。门静脉周围肝细胞的内源性葡萄糖合成比肝静脉周围肝细胞高1.57倍。给予刺激葡萄糖异生的底物,门静脉周围肝细胞的葡萄糖合成则增加1.7-2.1倍。肝静脉周围肝细胞的内源性酮体生成比门静脉周围肝细胞高1.3倍。给予能明显刺激酮体生成的辛酸盐,肝静脉周围肝细胞的酮体生成仅略为增加。我们的结果证实,在基础和刺激的条件下,葡萄糖的异生在门静脉周围肝细胞中优先,而酮体生成仅在肝静脉周围肝细胞占微弱的优势。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号