首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
T-2 toxin metabolism by ruminal bacteria and its effect on their growth   总被引:3,自引:0,他引:3  
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

2.
Four strains of Butyrivibrio fibrisolvens did not degrade aflatoxin B1. Acetyl T-2 toxin, T-2 toxin, HT-2 toxin, deoxynivalenol, diacetoxyscirpenol, verrucarin A, zearalenone, and ochratoxin A did not affect the specific growth rate of B. fibrisolvens CE51 significantly, but all were degraded to greater or lesser extents. Breakdown products were produced as a result of deacetylation reactions.  相似文献   

3.
Four strains of Butyrivibrio fibrisolvens did not degrade aflatoxin B1. Acetyl T-2 toxin, T-2 toxin, HT-2 toxin, deoxynivalenol, diacetoxyscirpenol, verrucarin A, zearalenone, and ochratoxin A did not affect the specific growth rate of B. fibrisolvens CE51 significantly, but all were degraded to greater or lesser extents. Breakdown products were produced as a result of deacetylation reactions.  相似文献   

4.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

5.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

6.
We tested a novel colorimetric toxicity test, based on inhibition of beta-galactosidase activity in the yeast Kluyveromyces marxianus, for sensitivity to a range of mycotoxins. A variety of trichothecene mycotoxins could be detected. The order of toxicity established with this bioassay was verrucarin A > roridin A > T-2 toxin > diacetoxyscirpenol > HT-2 toxin > acetyl T-2 toxin > neosolaniol > fusarenon X > T-2 triol > scirpentriol > nivalenol > deoxynivalenol > T-2 tetraol. The sensitivity of detection was high, with the most potent trichothecene tested, verrucarin A, having a 50% effective concentration (concentration of toxin causing 50% inhibition) of 2 ng/ml. Other mycotoxins (cyclopiazonic acid, fumonisin B1, ochratoxin A, patulin, sterigmatocystin, tenuazonic acid, and zearalenone) could not be detected at up to 10 micrograms/ml, nor could aflatoxins B1 and M1 be detected at concentrations up to 25 micrograms/ml. This test should be useful for trichothecene detection and for studies of relevant interactions-both between trichothecenes themselves and between trichothecenes and other food constituents.  相似文献   

7.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

8.
Concentrations of T-2, HT-2, 3'-OH T-2, 3'-OH HT-2, T-2 triol, and T-2 tetraol toxins which inhibited [3H]thymidine uptake in mitogen-stimulated human peripheral lymphocytes by 50% were 1.5, 3.5, 4.0, 50, 150, and 150 ng/ml, respectively. The results suggested that the initial hydrolysis of T-2 toxin and the hydroxylation of T-2 toxin to 3'-OH T-2 toxin did not significantly decrease the immunotoxicity of the parent molecule, whereas further hydrolysis to T-2 triol and T-2 tetraol toxins or hydroxylation to 3'-OH HT-2 toxin decreased in vitro toxicity for human lymphocytes.  相似文献   

9.
The production of deepoxy metabolites of the trichothecene mycotoxins T-2 toxin and diacetoxyscirpenol, including deepoxy HT-2 (DE HT-2), deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol is described. The metabolites were prepared by in vitro fermentation with bovine rumen microorganisms under anaerobic conditions and purified by normal and reverse-phase high-pressure liquid chromatography. Capillary gas chromatographic retention times and mass spectra of the derivatized metabolites were obtained. The deepoxy metabolites were significantly less toxic to brine shrimp than were the corresponding epoxy analogs. Polyclonal and monoclonal T-2 antibodies were examined for cross-reactivity to several T-2 metabolites. Both HT-2 and DE HT-2 cross-reacted with mouse immunoglobulin monoclonal antibody 15H6 to a greater extent than did T-2 toxin. Rabbit polyclonal T-2 antibodies displayed greater specificity to T-2 toxin compared with the monoclonal antibody, with relative cross-reactivities of only 17.4, 14.6, and 9.2% for HT-2, DE HT-2, and deepoxy T-2 triol, respectively. Cross-reactivity of both antibodies was weak for T-2 triol, T-2 tetraol, 3'OH T-2, and 3'OH HT-2.  相似文献   

10.
The type A trichothecenes T-2 and HT-2 toxins are toxic secondary metabolites produced by fungi of the Fusarium genus. Their occurrence in cereals, especially in oats, implies health risks for the consumer. Therefore, it is an important task to develop selective and sensitive methods for the analysis of T-2 and HT-2 toxins, and to undertake further studies on their stability and toxicity. Although most toxins are commercially available, their high prices are the limiting factor on the realization of these experiments. Thus, we developed a method for large-scale production of T-2 and HT-2 toxin as well as T-2 triol and T-2 tetraol. T-2 toxin was obtained in gram quantities by biosynthetic production with cultures of F. sporotrichioides. As HT-2 toxin was only formed as a by-product, and T-2 triol and T-2 tetraol were not generated, these compounds were produced by alkaline hydrolysis of T-2 toxin. Separation and isolation of crude toxins was achieved by fast centrifugal partition chromatography (FCPC), which is an efficient tool for the large-scale purification of natural products. Using this fast and yield effective technique, several hundred milligrams of HT-2 toxin, T-2 triol, and T-2 tetraol were obtained. Subsequent, HT-2 toxin and T-2 triol were used for the large-scale synthesis of isotope-labeled T-2 and HT-2 toxin, respectively. Using these standards, an isotope dilution-(ID)-HPLC-MS/MS method for the quantification of T-2 and HT-2 toxin in different matrices was developed.  相似文献   

11.
Three new immunogens which were prepared by conjugation of the carboxymethyl oxime (CMO) derivatives of HT-2 toxin, T-2 tetraol (T-2 4ol), and T-2 tetraol tetraacetate (T-2 4Ac) to bovine serum albumin (BSA) were tested for the production of antibodies against the major metabolites of T-2 toxin. Antibodies against HT-2 toxin and T-2 4Ac were obtained from rabbits 5 to 10 weeks after immunizing the animals with CMO-HT-2-BSA and CMO-T-2 4Ac-BSA conjugates. Immunization with CMO-T-2 4ol-BSA resulted in no antibody against T-2 4ol. The antibody produced against HT-2 toxin had great affinity for HT-2 toxin as well as good cross-reactivity with T-2 toxin. The relative cross-reactivities of anti-HT-2 toxin antibody with HT-2 toxin, T-2 toxin, iso-T-2 toxin, acetyl-T-2 toxin, 3'-OH HT-2, 3'-OH T-2, T-2 triol, and 3'-OH acetyl-T-2, were 100, 25, 10, 3.3, 0.25, 0.15, 0.12 and 0.08%, respectively. Antibody against CMO-T-2 4Ac was very specific for T-2 4Ac and had less than 0.1% cross-reactivity with T-2 toxin, HT-2 toxin, acetyl-T-2 toxin, diacetoxyscirpenol, deoxynivalenol, and deoxynivalenol triacetate as compared with T-2 4Ac. The detection limits for HT-2 toxin and T-2 4ol by radioimmunoassay were approximately 0.1 and 0.5 ng per assay, respectively.  相似文献   

12.
Three new immunogens which were prepared by conjugation of the carboxymethyl oxime (CMO) derivatives of HT-2 toxin, T-2 tetraol (T-2 4ol), and T-2 tetraol tetraacetate (T-2 4Ac) to bovine serum albumin (BSA) were tested for the production of antibodies against the major metabolites of T-2 toxin. Antibodies against HT-2 toxin and T-2 4Ac were obtained from rabbits 5 to 10 weeks after immunizing the animals with CMO-HT-2-BSA and CMO-T-2 4Ac-BSA conjugates. Immunization with CMO-T-2 4ol-BSA resulted in no antibody against T-2 4ol. The antibody produced against HT-2 toxin had great affinity for HT-2 toxin as well as good cross-reactivity with T-2 toxin. The relative cross-reactivities of anti-HT-2 toxin antibody with HT-2 toxin, T-2 toxin, iso-T-2 toxin, acetyl-T-2 toxin, 3'-OH HT-2, 3'-OH T-2, T-2 triol, and 3'-OH acetyl-T-2, were 100, 25, 10, 3.3, 0.25, 0.15, 0.12 and 0.08%, respectively. Antibody against CMO-T-2 4Ac was very specific for T-2 4Ac and had less than 0.1% cross-reactivity with T-2 toxin, HT-2 toxin, acetyl-T-2 toxin, diacetoxyscirpenol, deoxynivalenol, and deoxynivalenol triacetate as compared with T-2 4Ac. The detection limits for HT-2 toxin and T-2 4ol by radioimmunoassay were approximately 0.1 and 0.5 ng per assay, respectively.  相似文献   

13.
In vitro metabolism of T-2 toxin with S-9 fraction obtained from livers of phenobarbital-treated pigs and rats in the presence of different esterase inhibitors, including NaF, p-hydroxymercuribenzoate, phenylmethylsulfonyl fluoride, eserine sulfate, diisopropylfluorophosphate, and diethyl p-nitrophenyl phosphate, was studied. The metabolism was completely shifted to the hydroxylation at the C-3' position in the T-2 toxin molecule when esterase inhibitors were present. Diethyl p-nitrophenyl phosphate was found to be the most potent among six esterase inhibitors tested. In the presence of 10(-4) M diethyl p-nitrophenyl phosphate, 3'-hydroxy-T-2 toxin was the only metabolite detected. Similar results were obtained when other T-2-related metabolites were tested. The yield of conversion of T-2 toxin, acetyl T-2 toxin, HT-2 toxin and T-2 triol to their respective 3'-hydroxyl derivatives were 82, 73, 72, and 75%, respectively.  相似文献   

14.
Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2.   总被引:7,自引:4,他引:3       下载免费PDF全文
The metabolic pathway of T-2 toxin in Curtobacterium sp. strain 114, one of the T-2 toxin-assimilating soil bacteria, was investigated by thin-layer and gas-liquid chromatographic analyses. T-2 toxin added to the basal medium as a single carbon and energy source was biotransformed into HT-2 toxin and an unknown metabolite. Infrared, mass spectrum, proton magnetic resonance, and other physico-chemical analyses identified this new metabolite as T-2 triol. T-2 toxin was first deacetylated by the bacterium into HT-2 toxin, and this metabolite was then biotransformed into T-2 triol without formation of neosolaniol and T-2 tetraol. No trichothecenes remained in the culture medium after prolonged culture. Some properties of T-2 toxin-hydrolyzing enzymes were observed with whole cells, the cell-free soluble fraction, and the culture filtrate. Besides T-2 toxin, trichothecenes such as diacetoxyscirpenol, neosolaniol, nivalenol, and fusarenon-X were also assimilated by this bacterium.  相似文献   

15.
The cross-feeding of xyland hydrolysis products between the xylanolytic bacterium Butyrivibrio fibrisolvens H17c and the xylooligosaccharide-fermenting bacterium Selenomonas ruminantium GA192 was investigated. Cultures were grown anaerobically in complex medium containing oat spelt xylan, and the digestion of xylan and the generation and subsequent utilization of xylooligosaccharide intermediates were monitored over time. Monocultures of B. fibrisolvens rapidly degraded oat spelt xylan, and a pool of extracellular degradation intermediates composed of low-molecular-weight xylooligosaccharides (xylobiose through xylopentaose and larger, unidentified oligomers) accumulated in these cultures. The ability of S. ruminantium to utilize the products of xylanolysis by B. fibrisolvens was demonstrated by its ability to grow on xylan that had first been digested by the extracellular xylanolytic enzymes of B. fibrisolvens. Although enzymatic hydrolysis converted the xylan to soluble products, this alone was not sufficient to assure complete utilization by S. ruminantium, and considerable quantities of oligosaccharides remained following growth. Stable xylan-utilizing cocultures of S. ruminantium and B. fibrisolvens were established, and the utilization of xylan was monitored. Despite the presence of an oligosaccharide-fermenting organism, accumulations of acid-alcohol soluble products were still noted; however, the composition of carbohydrates present in these cultures differed from that seen when B. fibrisolvens was cultivated alone. Residual carbohydrates present at various times during growth were of higher average degree of polymerization in cocultures than in cultures of B. fibrisolvens alone. Structural characterization of these residual products may help define the limitations on the assimilation of xylooligosaccharides by ruminal bacteria.  相似文献   

16.
Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).  相似文献   

17.
Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).  相似文献   

18.
A total of 120 freshly harvested wheat samples from the 2004 season in nine locations from Northern Buenos Aires Province, Argentina, were analysed for trichothecene natural occurrence and associated mycoflora, and for determining the influence of commonly used fungicide field treatment and the cultivar type on trichothecene contamination. The trichothecenes T-2 tetraol, T-2 triol, HT-2 and T-2 toxin (HT-2, T-2), diacetoxyscirpenol (DAS), nivalenol (NIV), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) were analysed by gas chromatography and electron capture detection. Detection limits ranged from 4 to 20 μg/kg. The isolation frequencies of species were calculated. Alternaria alternata, Fusarium graminearum, Fusarium poae and Fusarium semitectum were the predominant fungal species identified as endogenous mycoflora. The type of cultivar and the fungicide field treatment did not affect significantly the trichothecene contamination. The trichothecenes type A detected were HT-2 and T-2 triol toxins and the type B were DON, NIV and 3-ADON. Based on 120 samples the incidences were 21.7% for 3-ADON, 22.5% for HT-2, 27.5% for T-2 triol and 85% for DON. NIV was confirmed in one sample. Mean levels of trichothecene positive samples were between 7 and 2788 μg/kg.  相似文献   

19.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

20.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号