首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomewide linkage studies of type 1 diabetes (or insulin-dependent diabetes mellitus [IDDM]) indicate that several unlinked susceptibility loci can explain the clustering of the disease in families. One such locus has been mapped to chromosome 11q13 (IDDM4). In the present report we have analyzed 707 affected sib pairs, obtaining a peak multipoint maximum LOD score (MLS) of 2.7 (lambda(s)=1.09) with linkage (MLS>=0.7) extending over a 15-cM region. The problem is, therefore, to fine map the locus to permit structural analysis of positional candidate genes. In a two-stage approach, we first scanned the 15-cM linked region for increased or decreased transmission, from heterozygous parents to affected siblings in 340 families, of the three most common alleles of each of 12 microsatellite loci. One of the 36 alleles showed decreased transmission (50% expected, 45.1% observed [P=.02, corrected P=.72]) at marker D11S1917. Analysis of an additional 1,702 families provided further support for negative transmission (48%) of D11S1917 allele 3 to affected offspring and positive transmission (55%) to unaffected siblings (test of heterogeneity P=3x10-4, corrected P=. 01]). A second polymorphic marker, H0570polyA, was isolated from a cosmid clone containing D11S1917, and genotyping of 2,042 families revealed strong linkage disequilibrium between the two markers (15 kb apart), with a specific haplotype, D11S1917*03-H0570polyA*02, showing decreased transmission (46.4%) to affected offspring and increased transmission (56.6%) to unaffected siblings (test of heterogeneity P=1.5x10-6, corrected P=4.3x10-4). These results not only provide sufficient justification for analysis of the gene content of the D11S1917 region for positional candidates but also show that, in the mapping of genes for common multifactorial diseases, analysis of both affected and unaffected siblings is of value and that both predisposing and nonpredisposing alleles should be anticipated.  相似文献   

2.
Type 1 diabetes (T1D) is a genetically complex disorder of glucose homeostasis that results from the autoimmune destruction of the insulin-secreting cells of the pancreas. Two previous whole-genome scans for linkage to T1D in 187 and 356 families containing affected sib pairs (ASPs) yielded apparently conflicting results, despite partial overlap in the families analyzed. However, each of these studies individually lacked power to detect loci with locus-specific disease prevalence/sib-risk ratios (lambda(s)) <1.4. In the present study, a third genome scan was performed using a new collection of 225 multiplex families with T1D, and the data from all three of these genome scans were merged and analyzed jointly. The combined sample of 831 ASPs, all with both parents genotyped, provided 90% power to detect linkage for loci with lambda(s) = 1.3 at P=7.4x10(-4). Three chromosome regions were identified that showed significant evidence of linkage (P<2.2x10(-5); LOD scores >4), 6p21 (IDDM1), 11p15 (IDDM2), 16q22-q24, and four more that showed suggestive evidence (P<7.4x10(-4), LOD scores > or =2.2), 10p11 (IDDM10), 2q31 (IDDM7, IDDM12, and IDDM13), 6q21 (IDDM15), and 1q42. Exploratory analyses, taking into account the presence of specific high-risk HLA genotypes or affected sibs' ages at disease onset, provided evidence of linkage at several additional sites, including the putative IDDM8 locus on chromosome 6q27. Our results indicate that much of the difficulty in mapping T1D susceptibility genes results from inadequate sample sizes, and the results point to the value of future international collaborations to assemble and analyze much larger data sets for linkage in complex diseases.  相似文献   

3.
An association between insulin-dependent diabetes mellitus (IDDM) and an RFLP adjacent to the insulin gene has been consistently observed, but its etiological significance is unclear. We studied unrelated IDDM patients (N = 45) and controls (N = 65) to confirm the association--and assessed evidence for linkage in 22 families with at least two affected (IDDM) sibs--to determine whether the insulin-gene region actually contributes to susceptibility to IDDM. All individuals were typed for the RFLP in the 5'-flanking region of the insulin gene (5'FP) used in the previous studies, and the 12 families not fully informative for linkage with the 5'FP were typed for additional closely linked RFLPs. We found a higher frequency of class 1 alleles of the 5'FP in IDDM patients (.83) than in controls (.75), which is consistent with the reported association, but the difference was not statistically significant in our sample. Among the 33 affected sib pairs (ASPs) in 22 families, if maximum possible sharing is assumed when sharing is ambiguous, 10 pairs share both parental insulin genes, 17 pairs share one, and six share neither. This distribution is incompatible with close linkage. In contrast, for the HLA region, for which all 22 families are fully informative, 19 of the 33 ASPs share two haplotypes and the remaining 14 share one. There are no pairs that share neither HLA haplotype. Thus, although these data clearly illustrate the contribution of HLA-linked susceptibility to IDDM, they argue strongly against a contribution of similar magnitude by the insulin-gene region.  相似文献   

4.
Several investigators have reported an association between insulin-dependent diabetes mellitus (IDDM) and an RFLP detected with a probe for the constant region of the beta chain (C beta) of the human T-cell receptor (TCR). A likely hypothesis is that the closely linked TCR variable (V beta) region genes contribute to IDDM susceptibility and that the association with the TCR C beta locus reflects this contribution, via linkage disequilibrium between V beta and C beta. The products of the beta-chain genes might be expected to be involved in the etiology of IDDM because of the autoimmune aspects of IDDM, the known involvement of HLA, and the necessity for TCR and HLA molecules to interact in an immune response. In order to investigate the hypothesis, we tested for linkage between IDDM and V genes encoded at either the TCR beta locus on chromosome 7 or the TCR alpha locus on chromosome 14, using 36 families with multiple affected sibs. No excess sharing of haplotypes defined by V alpha or V beta gene RFLPs was observed in affected sib pairs from IDDM families. We also studied unrelated IDDM patients (N = 73) and controls (N = 45) with the C beta RFLP but were unable to confirm the reported association even when the sample was stratified by HLA-DR type. Our results are incompatible with close linkage, in the majority of families, between either the TCR alpha or TCR beta locus and a gene making a major contribution to susceptibility to IDDM.  相似文献   

5.
One hundred families with insulin-dependent diabetes mellitus (IDDM) were analyzed for linkage with 27 genetic markers, including HLA, properdin factor B (BF), and glyoxalase 1(GLO) on chromosome 6, and Kidd blood group (Jk) on chromosome 2. The linkage analyses were performed under several different genetic models. An approximate correction for two-locus linkage analysis was developed and applied to four markers. Two different heterogeneity tests were implemented and applied to all the markers. One, the Predivided-Sample Test, utilizes various criteria thought to be relevant to genetic heterogeneity in IDDM. The other, the Admixture Test, looks for heterogeneity without specifying a prior how the sample should be divided. Results continued to support linkage of IDDM with three chromosome 6 markers: HLA, BF, and GLO. The total lod score for Kidd blood group, under the recessive model with 20% penetrance, is 1.63--down 1.2 from the 2.83 reported by us earlier. The only other marker whose lod score exceeded 1.0 under any model was pancreatic amylase (AMY2). The two-locus correction, which involved lowering the penetrance values used in the analysis, affected estimates of theta (recombination fraction) but did not markedly change the lod scores themselves. There was little evidence for heterogeneity within any of the lod scores, under either the Predivided-Sample Test or the Admixture Test.  相似文献   

6.
In an effort to clarify the mode of inheritance of insulin-dependent diabetes mellitus (IDDM), a total of 230 nuclear families with pointers were analyzed using the computer program COMBIN. Each family was ascertained without deliberate selection for multiplex families, and most families were completely typed for HLA-B, HLA-DR, and properdin factor B (Bf). There were 186 families with normal parents, 44 families with one affected parent, and no families with two affected parents. The computer program COMBIN evaluates evidence for a major locus of disease susceptibility, linkage of the major locus to a known genetic marker locus, linkage disequilibrium between the marker haplotypes and disease susceptibility, pleiotropic effects, and presence of an unlinked modifier. The parameters of COMBIN are T, Q, and D, representing the displacement, gene frequency of the IDDM allele, and dominance, respectively, of the major locus--and TM, QM, and DM being the analogous parameters of the modifier. In addition, the recombination fraction, theta, between the IDDM locus and HLA as well as the coupling frequencies are estimated. Finally, COMBIN simultaneously performs segregation and linkage analysis, with the optimal model being adjusted by the fit to the haplotype sharing distribution of IDDM. The results of these analyses indicated that the best-fitting genetic model of diabetic susceptibility appears to be a single major locus with near recessivity on a scale of standardized genetic liability, with gene frequency of the IDDM susceptibility allele of approximately 14%. In addition, the recombination fraction between the major locus and HLA is zero in all models; that is, for the B-BF-DR haplotype, the IDDM locus is tightly linked, probably (according to data from previous studies) to HLA-DR. Information determined by magnitude of coupling frequencies indicated that there is significant positive linkage disequilibrium with the haplotypes B8-BfS-DR4 and B15-BfS-DR4, significant negative linkage disequilibrium with B7-BfS-DR2, and intermediate disequilibrium for B8-BfS-DR3, B18-BfF1-DR3, and B40-BfS-DR4. Significant evidence in favor of an unlinked (to HLA) modifier (either single major locus or polygenes) could not be demonstrated. In conclusion, genetic susceptibility to IDDM appears to be most consistent with a single major locus with near recessivity that is tightly linked to HLA.  相似文献   

7.
Previous studies have identified a susceptibility region for insulin-dependent (type 1) diabetes mellitus on chromosome 11q13 (IDDM4). In this study, 15 polymorphic markers were analyzed for 382 affected sibpair (ASP) families with type 1 diabetes. Our analyses provided additional evidence for linkage for IDDM4 (a peak LOD score of 3.4 at D11S913). The markers with strong linkage evidence are located within an interval of approximately 6 cM between D11S4205 and GALN. We also identified polymorphisms in two candidate genes, Fas-associated death domain protein (FADD) and galanin (GALN). Analyses of the data by transmission/disequilibrium test (TDT) and extended TDT (ETDT) did not provide any evidence for association/linkage with these candidate genes. However, ETDT did reveal significant association/linkage with the marker D11S987 (P=0.0004) within the IDDM4 interval defined by ASP analyses, suggesting that IDDM4 may be in the close proximity of D11S987.  相似文献   

8.
Affected sib pair and linkage disequilibrium analysis, intrafamilial and case-control association studies were performed on 81 Danish multiplex insulin-dependent diabetes mellitus (IDDM) families (382 individuals) and 82 healthy Danish controls. The results confirm the linkage of D15S107 to IDDM in these Danish IDDM families (P = 0.010). When these data are combined with those of previous studies, an even stronger case for linkage can be made (P = 0.0005). Our analyses show that the D15S107*130 allele provides increased susceptibility (P = 0.02, relative risk = 3.55) and that the D15S107 locus contributes up to 16% of the familial clustering of IDDM. The analysis of affected sib pairs suggests that HLA and D15S107 may possibly act independently of each other. Taken together with our previous findings, our results suggest that three causes of susceptibilities can be discerned in the IDDM patient population: (1) a major susceptibility caused by the HLA-DRB1 alleles; (2) a minor susceptibility caused by the joint action of HLA and other non-HLA gene(s); and (3) a minor susceptibility caused by non-HLA gene(s). Received: 18 March 1996 / Revised: 17 May 1996  相似文献   

9.
Affected-sib-pair analyses were performed using 104 Caucasian families to map genes that predispose to insulin-dependent diabetes mellitus (IDDM). We have obtained linkage evidence for D6S446 (maximum lod score [MLS] = 2.8) and for D6S264 (MLS = 2.0) on 6q25-q27. Together with a previously reported data set, linkage can be firmly established (MLS = 3.4 for D6S264), and the disease locus has been designated IDDM8. With analysis of independent families, we confirmed linkage evidence for the previously identified IDDM3 (15q) and DDM7 (2q). We also typed additional markers in the regions containing IDDM3, IDDM4, IDDM5, and IDDM8. Preliminary linkage evidence for a novel region on chromosome 4q (D4S1566) has been found in 47 Florida families (P < .03). We also found evidence of linkage for two regions previously identified as potential linkages in the Florida subset: D3S1303 on 3q (P < .04) and D7S486 on 7q (P < .03). We could not confirm linkage with eight other regions (D1S191, D1S412, D4S1604, D8S264, D8S556, D10S193, D13S158, and D18S64) previously identified as potential linkages.  相似文献   

10.
In a recent study of GM allotype frequencies in HLA-defined subsets of patients with insulin-dependent diabetes mellitus (IDDM) and similarly defined healthy sibling controls, we found evidence for an HLA-dependent GM effect on IDDM susceptibility. To circumvent problems inherent in such patient-control studies of complex diseases, we have now examined sharing of genes in the HLA and GM regions in 26 informative pairs of siblings who were both affected with IDDM. We found that: (1) in the total sample of affected sib-pairs, sharing of two HLA haplotypes was increased compared to Mendelian expectations, in agreement with many previous studies; (2) in the total sample, sharing of GM region genes (as measured by GM phenotype concordance) was not different from Mendelian expectations, given the distribution of parental mating types; and (3) affected sib-pairs who shared two HLA haplotypes showed significantly increased sharing of GM region genes compared to affected sib-pairs who shared one or zero HLA haplotypes (P = .018). These results provide new evidence for HLA-dependent effects of a locus at or near GM on susceptibility to IDDM.  相似文献   

11.
The segregation of classical and nonclassical 21-hydroxylase deficiency (21-OHD) and its linkage to HLA-B was investigated in 220 families. First, the surprisingly high frequency of the nonclassical 21-OHD gene estimated elsewhere was confirmed using a different methodology which avoided particular assumptions concerning the classification of an individual''s genotype. In the present study the gene frequency was found to be .103 +/- .020 in an ethnically pooled sample and was as high as .223 +/- .062 among Ashkenazi Jews. Second, the segregation analysis of families ascertained through a nonclassical 21-OHD proband and those ascertained through a classical 21-OHD proband showed essentially identical results. A partial recessive model with no recombination between 21-OHD and HLA-B fitted the data better than did a complete recessive model with approximately 0.5% recombination between 21-OHD and HLA-B. The support for the partial over the complete recessive model depended on the assumed ascertainment probability, an unknown parameter in these data. Four families provided most of the evidence against the complete recessive model. All these included an unaffected sib who shared both HLA-B specificities in common with the affected proband. Possible explanations for the condition in these families include recombination, gene conversion, mutation in one of the parental gametes, or technical errors.  相似文献   

12.
Linkage studies have led to the identification of several chromosome regions that may contain susceptibility loci to type I diabetes (IDDM), in addition to the HLA and INS loci. These include two on chromosome 6q, denoted IDDM5 and IDDM8, that are not linked to HLA. In a previous study, we noticed that the evidence for linkage to IDDM susceptibility around the HLA locus extended over a total distance of 100 cM, which suggested to us that another susceptibility locus could reside near HLA. We developed a statistical method to test this hypothesis in a panel of 523 multiplex families from France, the United States, and Denmark (a total of 667 affected sib pairs, 536 with both parents genotyped), and here present evidence (P = .00003) of a susceptibility locus for IDDM located 32 cM from HLA in males but not linked to HLA in females and distinct from IDDM5 and IDDM8. A new statistical method to test for the presence of a second susceptibility locus linked to a known first susceptibility locus (here HLA) is presented. In addition, we analyzed our current family panel with markers for IDDM5 and IDDM8 on chromosome 6 and found suggestions of linkage for both of these loci (P = .002 and .004, respectively, on the complete family panel). When cumulated with previously published results, with overlapping families removed, the affected-sib-pair tests had a significance of P = .0001 for IDDM5 and P = .00004 for IDDM8.  相似文献   

13.
The present study combines segregation and linkage information on 30 families ascertained through a proband and a first degree relative affected with insulin-dependent diabetes mellitus (IDDM). An autosomal dominant model with incomplete penetrance was much more likely to fit the family data than a recessive model, whether or not linkage to HLA was assumed. The lod scores for linkage to HLA were 2.46 at theta M = theta F = 0.00 for dominant and 1.45 at theta M = theta F = 0.22 for a recessive model. The results are discussed in light of heterogeneity in likelihood and lod scores when the families are grouped by familial types, which indicate that the increase in likelihood of a dominant hypothesis can be attributed to the parent-child families and not the sib-sib families.  相似文献   

14.
Linkage of chromosome 11q13 to type 1 diabetes (T1D) was first reported from genome scans (Davies et al. 1994; Hashimoto et al. 1994) resulting in P <2.2 x 10(-5) (Luo et al. 1996) and designated IDDM4 ( insulin dependent diabetes mellitus 4). Association mapping under the linkage peak using 12 polymorphic microsatellite markers suggested some evidence of association with a two-marker haplotype, D11S1917*03-H0570POLYA*02, which was under-transmitted to affected siblings and over-transmitted to unaffected siblings ( P=1.5 x 10(-6)) (Nakagawa et al. 1998). Others have reported evidence for T1D association of the microsatellite marker D11S987, which is approximately 100 kb proximal to D11S1917 (Eckenrode et al. 2000). We have sequenced a 400-kb interval surrounding these loci and identified four genes, including the low-density lipoprotein receptor related protein (LRP5) gene, which has been considered as a functional candidate gene for T1D (Hey et al. 1998; Twells et al. 2001). Consequently, we have developed a comprehensive SNP map of the LRP5 gene region, and identified 95 SNPs encompassing 269 kb of genomic DNA, characterised the LD in the region and haplotypes (Twells et al. 2003). Here, we present our refined linkage curve of the IDDM4 region, comprising 32 microsatellite markers and 12 SNPs, providing a peak MLS=2.58, P=5 x 10(-4), at LRP5 g.17646G>T. The disease association data, largely focused in the LRP5 region with 1,106 T1D families, provided no further evidence for disease association at LRP5 or at D11S987. A second dataset, comprising 1,569 families from Finland, failed to replicate our previous findings at LRP5. The continued search for the variants of the putative IDDM4 locus will greatly benefit from the future development of a haplotype map of the genome.  相似文献   

15.
Heterogeneity in X-linked recessive Charcot-Marie-Tooth neuropathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Three families presenting with X-linked recessive Charcot-Marie-Tooth neuropathies (CMT) were studied both clinically and genetically. The disease phenotype in family 1 was typical of CMT type 1, except for an infantile onset; two of five affected individuals were mentally retarded, and obligate-carrier females were unaffected. Families 2 and 3 showed distal atrophy with weakness, juvenile onset, and normal intelligence. Motor-nerve conduction velocities were significantly slowed, and electromyography data were consistent with denervation in affected CMT males in all three families. Thirty X-linked RFLPs were tested for linkage studies against the CMT disease loci. Family 1 showed tight linkage (recombination fraction [theta] = 0) to Xp22.2 markers DXS16, DXS143, and DXS43, with peak lod scores of 1.75, 1.78, and 2.04, respectively. A maximum lod score of 3.48 at DXS16 (theta = 0) was obtained by multipoint linkage analysis of the map DXS143-DXS16-DXS43. In families 2 and 3 there was suggestion of tight linkage (theta = 0) to Xq26 markers DXS86, DXS144, and DXS105, with peak lod scores of 2.29, 1.33, and 2.32, respectively. The combined maximum multipoint lod score of 1.81 at DXS144 (theta = 0) for these two families occurred in the map DXS10-DXS144-DXS51-DXS105-DXS15-DXS52++ +. A joint homogeneity analysis including both regions (Xp22.2 and Xq26-28) provided evidence against homogeneity (chi 2 = 9.12, P less than .005). No linkage to Xp11.12-q22 markers was observed, as was reported for X-linked dominant CMT and the Cowchock CMT variant. Also, the chromosomes 1 and 17 CMT loci were excluded by pairwise linkage analysis in all three families.  相似文献   

16.
Two hundred subjects with insulin-dependent (type I) diabetes mellitus (IDDM) were typed for HLA-B, HLA-DR, and properdin factor B (Bf). HLA and Bf antigen and haplotype frequencies in subjects were compared with control frequencies derived from the 8th HLA Workshop. Frequencies of extended haplotypes (defined by B-Bf-DR alleles on a chromosome) were also contrasted with control frequencies. Significant positive associations between IDDM and HLA-B8, DR3, DR4, BfS, and BfF1 were confirmed, as were significant negative associations between IDDM and HLA-B7, DR2, DR5, DR7, and BfF. One haplotype (B7-BfS-DR2) exhibited significant negative association, while five haplotypes (B8-BfS-DR3, B8-BfS-DR4, B15-BfS-DR4, B18-BfF1-DR3, and B40-BfS-DR4) exhibited significant positive associations with IDDM. In this sample, 64% of all probands carried at least one of the high-risk haplotypes. In conclusion, the occurrence of five "high-risk" haplotypes associated with IDDM provides evidence for previously undocumented genetic heterogeneity and suggests that possibly more than two HLA-region genes may be involved in IDDM susceptibility.  相似文献   

17.
Approximately 2%–5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings, by Southern blot analysis. No examples of amplified repeats were seen in the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between −24 and −62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families.  相似文献   

18.
A population association has consistently been observed between insulin-dependent diabetes mellitus (IDDM) and the "class 1" alleles of the region of tandem-repeat DNA (5'' flanking polymorphism [5''FP]) adjacent to the insulin gene on chromosome 11p. This finding suggests that the insulin gene region contains a gene or genes contributing to IDDM susceptibility. However, several studies that have sought to show linkage with IDDM by testing for cosegregation in affected sib pairs have failed to find evidence for linkage. As means for identifying genes for complex diseases, both the association and the affected-sib-pairs approaches have limitations. It is well known that population association between a disease and a genetic marker can arise as an artifact of population structure, even in the absence of linkage. On the other hand, linkage studies with modest numbers of affected sib pairs may fail to detect linkage, especially if there is linkage heterogeneity. We consider an alternative method to test for linkage with a genetic marker when population association has been found. Using data from families with at least one affected child, we evaluate the transmission of the associated marker allele from a heterozygous parent to an affected offspring. This approach has been used by several investigators, but the statistical properties of the method as a test for linkage have not been investigated. In the present paper we describe the statistical basis for this "transmission test for linkage disequilibrium" (transmission/disequilibrium test [TDT]). We then show the relationship of this test to tests of cosegregation that are based on the proportion of haplotypes or genes identical by descent in affected sibs. The TDT provides strong evidence for linkage between the 5''FP and susceptibility to IDDM. The conclusions from this analysis apply in general to the study of disease associations, where genetic markers are usually closely linked to candidate genes. When a disease is found to be associated with such a marker, the TDT may detect linkage even when haplotype-sharing tests do not.  相似文献   

19.
Summary Linkage analysis of 15 families affected by X-linked agammaglobulinaemia (XLA) showed close linkage with three probes located towards the centre of the long arm of the X chromosome. No cross-overs were found using pXG12 (DXS94) lod 6.6 or S21 (DXS17) lod 4.4. One cross-over was found with 19.2 (DXS3). This confirms and extends a previous linkage study (Kwan et al. 1986) which demonstrated linkage with S21 and 19.2. Of the families 14 were informative for either pXG12 or S21 and these probes should thus be of great diagnostic value. No evidence of heterogeneity was found in the XLA families but several cross-overs within this region were detected in a family with the X-linked hyper-IgM syndrome confirming this disease as a separate clinical entity.  相似文献   

20.
Eating disorders, such as anorexia nervosa (AN), have a significant genetic component. In the current study, a genomewide linkage analysis of 192 families with at least one affected relative pair with AN and related eating disorders, including bulimia nervosa, was performed, resulting in only modest evidence for linkage, with the highest nonparametric linkage (NPL) score, 1.80, at marker D4S2367 on chromosome 4. Since the reduction of sample heterogeneity would increase power to detect linkage, we performed linkage analysis in a subset (n=37) of families in which at least two affected relatives had diagnoses of restricting AN, a clinically defined subtype of AN characterized by severe limitation of food intake without the presence of binge-eating or purging behavior. When we limited the linkage analysis to this clinically more homogeneous subgroup, the highest multipoint NPL score observed was 3.03, at marker D1S3721 on chromosome 1p. The genotyping of additional markers in this region led to a peak multipoint NPL score of 3.45, thereby providing suggestive evidence for the presence of an AN-susceptibility locus on chromosome 1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号