首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
Abstract: Membranes prepared from postmortem human brain were used to measure the activities of three components of the phosphoinositide second messenger system. [3H] Phosphatidylinositol ([3H] PI) hydrolysis was stimulated by directly activating phospholipase C with calcium, by activating guanine nucleotide-binding proteins (G proteins) with guanosine-5′-O-(3-thiotriphosphate) (GTPγS) or with AIF4, and by receptors activated with several agonists (in the presence of GTPγS), including (in order of increasing magnitudes of responses) carbachol, pilocarpine, histamine, trans-1-aminocyclopentyl-1, 3-dicarboxylic acid (a selective excitatory amino acid metabotropic receptor agonist), serotonin, and ATP. Gq/11 was identified as the G protein most likely to mediate [3H] PI hydrolysis in human brain membranes based on the findings that this process was not impaired by pretreatment with pertussis toxin and it was inhibited by antibodies specific for the α-subunit of Gq/11 but not by antibodies for Go or G11. The effects of postmortem delay on [3H] PI hydrolysis were examined by studying tissues obtained 6–21 h postmortem. A slight increase in basal [3H] PI hydrolysis was associated with increased postmortem time, suggesting a slow loss of the normal inhibitory control of phospholipase C. GTPγS- stimulated [3H] PI hydrolysis was unaffected by postmortem times within this range, but carbachol-induced [3H] PI hydrolysis tended to decrease with increasing postmortem times. These results demonstrate that the entire phosphoinositide complex remains functional and experimentally detectable in postmortem human brain membranes. This method provides a means to study the function, regulation, effects of diseases, and responses to drugs of the phosphoinositide system in human brain.  相似文献   

2.
Abstract: Assessing the function of the phosphoinositide signal transduction system in membranes prepared from postmortem human brain by measuring the hydrolysis of exogenous labeled phosphoinositides has been applied to studies of a variety of CNS disorders in recent years. Two issues concerning such studies were addressed in the current investigation: how do [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate compare as substrates, and how do dopamine D1 receptors influence phosphoinositide signaling? Comparisons of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis stimulated by guanosine-5′-O-(3-thiotriphosphate)-activated G proteins and by several receptor agonists demonstrated that in most cases each substrate gave similar relative results in membranes prepared from prefrontal cortices of six individuals. However, using optimal assay conditions, [3H]phosphatidylinositol produced a greater signal-to-noise ratio compared with [3H]phosphatidylinositol 4,5-bisphosphate. Dopamine D1 receptors were demonstrated to be directly coupled to phosphoinositide hydrolysis in human brain membranes, and this response was shown to be mediated by the Gq/11 G protein subtype and by the β-subtype of phospholipase C. Therefore, these results demonstrate that [3H]phosphatidylinositol is a suitable substrate to measure phosphoinositide hydrolysis in human brain membranes and that dopamine D1 receptors directly stimulate this signaling system.  相似文献   

3.
Abstract: The function of the phosphoinositide second messenger system was assessed in occipital, temporal, and frontal cortex obtained postmortem from subjects with bipolar affective disorder and matched controls by measuring the hydrolysis of [3H]phosphatidylinositol ([3H]PI) incubated with membrane preparations and several different stimulatory agents. Phospholipase C activity, measured in the presence of 0.1 mM Ca2+ to stimulate the enzyme, was not different in bipolar and control samples. G proteins coupled to phospholipase C were concentration-dependently activated by guanosine 5′-O-(3-thiotriphosphate) (GTPγS) and by NaF. GTPγS-stimulated [3H]PI hydrolysis was markedly lower (50%) at all tested concentrations (0.3–10 µM GTPγS) in occipital cortical membranes from bipolar compared with control subjects. Responses to GTPγS in temporal and frontal cortical membranes were similar in bipolars and controls, as were responses to NaF in all three regions. Brain lithium concentrations correlated directly with GTPγS-stimulated [3H]PI hydrolysis in bipolar occipital, but not temporal or frontal, cortex. Carbachol, histamine, trans-1-aminocyclopentyl-1,3-dicarboxylic acid, serotonin, and ATP each activated [3H]PI hydrolysis above that obtained with GTPγS alone, and these responses were similar in bipolars and controls except for deficits in the responses to carbachol and serotonin in the occipital cortex, which were equivalent to the deficit detected with GTPγS alone. Thus, among the three cortical regions examined there was a selective impairment in G protein-stimulated [3H]PI hydrolysis in occipital cortical membranes from bipolar compared with control subjects. These results directly demonstrate decreased activity of the phosphoinositide signal transduction system in specific brain regions in bipolar affective disorder.  相似文献   

4.
Membranes prepared from rat brain regions were used to measure the receptor-coupled and/or guanine nucleotide-binding protein (G protein)-mediated hydrolysis of exogenous [3H]phosphatidylinositol ([3H]PI). Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and NaF (in the presence of AlCl3) caused concentration-dependent stimulations of [3H]PI hydrolysis, supporting the conclusion that G proteins mediating [3H]PI hydrolysis can be activated in this preparation. Neither of these responses was altered by in vitro incubation with 8 mM LiCl, but both were reduced in hippocampal, striatal, and cortical membranes from rats that had been treated with lithium for 4 weeks compared with controls. Two cholinergic agonists, carbachol and pilocarpine, induced no hydrolysis of [3H]PI unless GTP gamma S was also present, in which case each equally stimulated [3H]PI hydrolysis above that obtained with GTP gamma S alone. In the presence of GTP gamma S several excitatory amino acid agonists stimulated [3H]PI hydrolysis to an extent similar to that of carbachol. After chronic lithium treatment, [3H]PI hydrolysis stimulated by carbachol was significantly attenuated, but the response to quisqualate was unaffected. Therefore, lithium added in vitro does not have an effect on cholinergic receptor- or G protein-mediated [3H]PI hydrolysis, but each of these is reduced by chronic lithium treatment. Because exogenous [3H]PI was provided as the substrate, it is evident that the inhibitory effect of chronic lithium treatment cannot be due to substrate depletion. Impaired function of G proteins appears to be the most likely mechanism accounting for attenuated [3H]PI hydrolysis after chronic administration of lithium.  相似文献   

5.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

6.
Rabbit brain cortical membranes, which have been extracted with 2 M KCl, hydrolyze exogenously added [3H]phosphatidylinositol [( 3H]PI) in a guanine nucleotide- and carbachol-dependent manner. Both oxotremorine-M and carbachol are full agonists with EC50 values of 8 and 73 microM, respectively. Pirenzepine and atropine inhibit carbachol-stimulated [3H]PI hydrolysis. The hydrolysis-resistant guanine nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) is the most potent in supporting carbachol-stimulated hydrolysis of PI. There is no effect of carbachol in the absence of guanine nucleotides or in the presence of 100 microM adenosine 5'-O-(3-thiotriphosphate), adenosine-5'-(beta, gamma-imido)triphosphate, or sodium pyrophosphate. Guanylyl-5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] in the presence of carbachol also stimulates PI hydrolysis although much less than that seen with GTP gamma S. GDP and Gpp(NH)p are potent antagonists of the GTP gamma S-dependent carbachol response. Optimal stimulation by carbachol and GTP gamma S was observed at 0.3-1 microM free Ca2+ and 6 mM MgCl2. Limited trypsinization resulted in loss of receptor-regulated PI breakdown and a slight decrease in basal activity. These results demonstrate that phospholipase C hydrolysis of exogenous PI by rabbit cortical membranes may be stimulated by carbachol in a guanine nucleotide-dependent manner.  相似文献   

7.
Mn2+ greatly increases the incorporation of myo-[3H]inositol into phosphatidylinositol (PI) of brain and other tissues by stimulating the activity of a PI-myo-inositol exchange enzyme. This study examined the ability of norepinephrine (NE) and carbachol to stimulate the hydrolysis of [3H]PI formed in the absence and presence of Mn2+-stimulated [3H]inositol exchange. Rat cerebral cortical slices were incubated with myo-[3H]inositol for 60 min in an N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES) buffer without or with MnCl2 (1 mM). The tissue was washed and further incubated with unlabeled myo-inositol and LiCl (10 mM). Prelabeled slices were then incubated with NE (0.1 mM) or carbachol (1 mM) to induce agonist-stimulated [3H]PI hydrolysis. Mn2+ treatment resulted in eight- and sixfold increases in control levels of [3H]PI and [3H]inositol monophosphate [( 3H]IP), respectively. Both NE and carbachol stimulated [3H]IP formation in tissue prelabeled without or with manganese. However, the degree of stimulation (percentage of control values) was greatly attenuated in the presence of Mn2+. In the absence of Mn2+ treatment, NE decreased [3H]PI radioactivity in the tissue to 80% of control values. However, NE did not decrease [3H]PI radioactivity in the Mn2+-treated tissue. These data demonstrate that Mn2+ stimulates incorporation of myo-[3H]inositol into a pool of PI in brain that has a rapid turnover but is not coupled to agonist-induced hydrolysis.  相似文献   

8.
The purpose of the present study was to explore the interaction of phosphatidylinositol breakdown and the turnover of arachidonic acid in isolated rat pancreatic acini by using receptor agonists and the calcium ionophore ionomycin. Acini prelabelled with myo-[3H]inositol in vivo responded to carbachol with a rapid breakdown of phosphatidylinositol. In the presence of [32P]Pi, carbachol increased labelling of phosphatidic acid and phosphatidylinositol within 1 and 5 min respectively. Carbachol also rapidly stimulated the incorporation of [14C]arachidonic acid into phosphatidylinositol within 2 min, and the peptidergic secretagogue caerulein caused the loss of radioactivity from phospholipids prelabelled with arachidonic acid. Ca2+ deprivation partially impaired the stimulatory action of carbachol on arachidonic acid turnover. In contrast with its stimulatory effects on [32P]Pi and [14C]arachidonate incorporation, carbachol inhibited the incorporation of the saturated fatty acid stearic acid into phosphatidylinositol. Whereas ionomycin stimulation of phosphatidylinositol breakdown and [32P]Pi labelling of phospholipids was slower in onset and less effective than carbachol stimulation, the ionophore effectively promoted (arachidonyl) phosphatidylinositol turnover within 2 min. These results implicate two separate pathways for stimulated phosphatidylinositol degradation in the exocrine pancreas, involving phospholipases A2 and C. Whereas mobilization of cellular Ca2+ appears sufficient to cause activation of phospholipase A2 and amylase secretion, additional events triggered by receptor activation may be required to act in concert with Ca2+ to optimally stimulate phospholipase C. The nature of the interaction between phospholipases A2 and C and their specific physiological roles in pancreatic secretion remain to be elucidated.  相似文献   

9.
The phosphoinositide signal transduction system, and particularly, phospholipase Cbeta isozymes, are relevant in the etiopathogeny of human neuropsychiatric pathologies such as depression. Stimulation of phospholipase Cbeta activity by muscarinic receptors and G proteins was determined in crude and synaptosomal membrane preparations from nine postmortem human frontal cortices (postmortem delay range 8 to 50 h). Thus, the phospholipase Cbeta activity was determined by measuring the hydrolysis of exogenous [3H]-phosphatidylinositol 4,5-bisphosphate. There was a postmortem delay-mediated decrease in the PIP2 hydrolysis irrespective of the membrane preparation used (P < 0.05). Moreover, there were statistically significant differences for exponential decay curve parameters (K factor and Span) of PLCbeta activity induced by agonist-mediated activation between crude and synaptosomal membrane preparations. These results show that the postsynaptic component of the PLCbeta activity is more sensible to the postmortem delay effect.  相似文献   

10.
Abstract: The psychotherapeutic action of Li+ in brain has been proposed to result from the depletion of cellular inositol secondary to its block of inositol monophosphatase. This action is thought to slow phosphoinositide resynthesis, thereby attenuating stimulated phosphoinositidase-mediated signal transduction in affected cells. In the present study, the effect of Li+ on muscarinic receptor–stimulated formation of the immediate precursor of phosphatidylinositol, CDP-diacylglycerol (CDP-DAG), has been examined in human SK-N-SH neuroblastoma cells that have been cultured under conditions that alter the cellular content of myo-inositol. Resting neuroblastoma cells, like brain cells in vivo, were found to concentrate inositol from the culture medium, achieving an intracellular level of 60.0 ± 4 nmol/mg of protein. The addition of carbachol to [3H]cytidine-prelabeled cells elicited a four- to fivefold increase in the accumulation of labeled CDP-DAG. This stimulated formation of [3H]CDP-DAG was completely blocked by the addition of 10 μM atropine, was not dependent on the presence of Li+, nor was it affected by co-incubation with myo-inositol. This result was in sharp contrast to findings in rat brain slices, in which carbachol-stimulated formation of [3H]CDP-DAG was potentiated ~ 10-fold by Li+ and substantially reduced by coincubation with inositol. The formation of [3H]CDP-DAG in labeled SK-N-SH cells by carbachol was both concentration and time dependent. The order of efficacy of muscarinic ligands in stimulating [3H]-CDP-DAG accumulation paralleled that established in these cells for inositol phosphate accumulation, i.e., carbachol ≥ oxotremorine-M > bethanecol ≥ arecoline > oxotremorine > pilocarpine. Extended culture of the SK-N-SH cells in an inositol-free chemically defined growth medium progressively reduced the intracellular inositol content to <5 nmol/mg of protein, a level comparable with that seen in cortical slices. In these inositol-depleted cells, Li+ potentiated carbachol-stimulated [3H]CDP-DAG formation, and this effect was completely reversed by coincubation with inositol (EC50 0.2 mM). The present study thus demonstrates, in the same cultured cell line, the effects of normal and reduced intracellular inositol levels on the ability of Li+ to attenuate phosphoinositide resynthesis, as inferred from [3H]CDP-DAG accumulation. The results indicate that Li+ can lead to a slowing of stimulated phosphoinositide turnover in neuroblastoma cells, provided that the intracellular inositol content has been significantly reduced.  相似文献   

11.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

12.
Ca2+ was required for carbachol-induced decreases in phosphatidylinositol (PI) and increases in phosphatidic acid (PA) concentrations during incubation of rat submaxillary gland fragments, but was not required for increases in [32P]Pi incorporation into these phospholipids. Like carbachol, A23187 provoked a Ca2+-dependent decrease in PI mass. These results suggest concomitant operation of two separate mechanisms for stimulating PI hydrolysis and 32P labeling of PA and PI during carbachol action: one mechanism is not dependent on external Ca2+ and is manifested by rapid labeling in a relatively small PA-PI pool; the other mechanism is dependent on Ca2+ and involves a large PA-PI pool which appears to have a relatively slow renewal (labeling) rate.  相似文献   

13.
Light Enhances the Turnover of Phosphatidylinositol in Rat Retinas   总被引:4,自引:1,他引:3  
Light stimulation of isolated rat retinas is shown to enhance the turnover of phosphatidylinositol (PI) as demonstrated by a light-dependent increase in [3H]inositol incorporation and concurrent hydrolysis of existing PI. Studies with rat retinas incubated with [3H]inositol and then microdissected at the level of the outer plexiform layer into photoreceptor cell and inner retina layers indicated that the light-enhanced incorporation of [3H]inositol was associated with the photoreceptor cell layer. The rate of PI hydrolysis in retinas prelabeled in vivo with [3H]inositol was higher in light than in dark incubations and was higher in the photoreceptor cell layer than within the inner retina. Within the photoreceptor cell layer, PI turnover involved 2%/min of the total PI contentin dark and 6–8%/min in light. In contrast to what has been reported for stimulus-enhanced turnover of PI in some tissues, this light-enhanced turnover of PI in the retina was not associated with detectable reductions in PI content. Parallel studies of sodium (22Na) uptake demonstrated that the photoreceptor cells remained functional during these incubations as they retained the capacity to restrict the entry of 22Na in light but not in dark.  相似文献   

14.
The rapid kinetics of [3H]inositol phosphate accumulation and turnover were examined in rat cerebral-cortex slices after muscarinic-receptor stimulation. Markedly increased [3H]inositol polyphosphate concentrations were observed to precede significant stimulated accumulation of [3H]inositol monophosphate. New steady-state accumulations of several 3H-labelled products were achieved after 5-10 min of continued agonist stimulation, but were rapidly and effectively reversed by subsequent receptor blockade. The results show that muscarinic-receptor activation involves phosphoinositidase C-catalysed hydrolysis initially of polyphosphoinositides rather than of phosphatidylinositol. Furthermore, prolonged carbachol stimulation is shown not to cause receptor desensitization, but to allow persistent hydrolysis of [3H]phosphatidylinositol bisphosphate and permit sustained metabolic flux through the inositol tris-/tetrakis-phosphate pathway.  相似文献   

15.
Phosphatidylcholine, in addition to the widely studied inositol phospholipids, is cleaved to produce second messengers in neuronal signal transduction processes. Because of the difficulty in labelling and measuring the metabolism of endogenous phosphatidylcholine in brain tissue, we investigated the utility of measuring the hydrolysis of exogenous labelled substrate incubated with rat cerebral cortical cytosol and membrane fractions as has been successful in studies of phosphoinositide hydrolysis. In the cytosol [3H]phosphatidylcholine was hydrolyzed at a linear rate for 60 min of incubation and GTPS stimulated hydrolysis by 63%. The products of phospholipase C and phospholipase D, phosphorylcholine and choline, contributed only 44% of the [3H]phosphatidylcholine hydrolytic products in the cytosol, with phospholipase D activity slightly predominating. GTPS stimulated cytosolic phospholipase C and reduced phospholipase D activity. [3H]Phosphatidylcholine was hydrolyzed much more slowly by membranes than by cytosol. In membranes the production of [3H]phosphorylcholine and [3H]choline were approximately equal, contributing 27% of the total [3H]phosphatidylcholine hydrolysis, and GTPS only caused a slight stimulation of phospholipase C activity. Chronic lithium treatment (4 weeks) appeared to slightly reduce [3H]phosphatidylcholine metabolism in the cytosol and in membranes, but no statistically significant reductions were achieved. Cytosol and membrane fractions from postmortem human brain metabolized [3H]phosphatidylcholine slowly, and GTPS had no effects. In summary, exogenous [3H]phosphatidylcholine was hydrolyzed by brain cytosol and membranes, and this was stimulated by GTPS, but the complex contributions of multiple metabolic pathways complicates the application of this method for studying individual pathways, such as phospholipase D which contributes only a fraction of the total processes hydrolyzing exogenous [3H]phosphatidylcholine.  相似文献   

16.
The potential role of receptor-stimulated phosphatidylinositol (PI) hydrolysis in a signal transduction mechanism has been increasingly recognized. Earlier studies have suggested a defect in alpha-adrenergic receptor function in the platelets of schizophrenic patients. Little is known, however, about the mechanisms for PI synthesis, breakdown, and regulation in schizophrenia. The present study was undertaken to investigate the metabolic turnover of inositol phospholipids and inositol phosphates by incorporation of [3H]myoinositol or [32P]orthophosphate into resting and activated platelets of normal controls and schizophrenic patients with and without neuroleptic treatment. After 5 h incubation at 37 degrees C, the majority of [3H]myoinositol was incorporated into platelet PI. Following thrombin-induced platelet activation, there was rapid formation of 3H-labeled inositol phosphates (IPs) with inositol monophosphate (IP1) being the most abundant product. The thrombin-induced formation of platelet IPs was found significantly higher in both haloperidol-stabilized and drug-free schizophrenics than in normal control subjects. When platelets were prelabeled with [32P]orthophosphates, thrombin-induced formation of phosphatidic acid (PA) was also significantly higher in haloperidol-stabilized schizophrenics than in normal controls. It is thought that thrombin-induced platelet activation is mediated through hydrolysis of polyphosphoinositides (poly-PI). The present data thus may reflect an increased signal transduction in schizophrenia, which is mediated through neuroleptic-regulated inositol phospholipid hydrolysis.  相似文献   

17.
Stimulation of rat pancreatic acinar cells with low concentrations of phosphatidylinositol (PI)-linked secretagogues induces [Ca2+]i oscillations, without measurable changes in the formation of inositol 1,4,5-trisphosphate. Therefore, we tested U73122 a new phospholipase C inhibitor to determine if PI turnover is necessary for the generation of [Ca2+]i oscillations. In acini prelabeled with [3H]inositol, PI hydrolysis on stimulation with either cholecystokinin or carbachol was inhibited dose-dependently by U73122, with a maximal effect seen at 10 microM; the formation of inositol 1,4,5-trisphosphate, measured using a radioreceptor assay, was also similarly inhibited. By contrast secretin- or vasoactive intestinal peptide-stimulated production of cAMP was unaffected by 10 microM U73122. These studies indicate that U73122 is a relatively specific inhibitor of G-protein-mediated phospholipase C activation in pancreatic acini. In fura-2-loaded acini, U73122 inhibited the increases in [Ca2+]i stimulated by these high concentrations of secretagogues which can be demonstrated to elicit PI turnover. The [Ca2+]i signal generated by directly stimulating G-proteins with sodium fluoride was also inhibited by U73122; however, the [Ca2+]i rise induced by thapsigargin was unaffected. These data indicate that the mechanism of inhibition was distal to the occupation of cell surface receptors but did not involve an interference of Ca2+ metabolism in general. When [Ca2+]i oscillations were elicited by low concentrations of cholecystokinin or carbachol, U73122 rapidly inhibited the oscillating [Ca2+]i signal. In contrast, oscillations induced by an analogue of cholecystokinin, JMV-180, which does not stimulate changes in PI metabolism at any concentration, were unaffected. This indicates that cholecystokinin- and carbachol-induced oscillations are probably initiated by small, localized changes in PI metabolism, which are not readily detectable. However, the inability of U73122 to inhibit JMV-180-induced oscillations indicates that PI metabolism may not necessarily be a prerequisite for the generation of [Ca2+]i oscillations.  相似文献   

18.
The ability of tricyclic antidepressants, monoamine oxidase inhibitors, mianserin and ouabain to stimulate hydrolysis of inositol phosphates was examined in rat cerebral cortex slices using a direct assay which involves labelling with [3H]inositol and assaying [3H]inositol phosphates in the presence of lithium. Desimipramine, imipramine, chlorimipramine, mianserin, and ouabain stimulated [3H]inositol phosphate accumulation in a concentration-dependent manner. The monoamine oxidase inhibitors, pargyline and nialamide were without effect. The stimulation of [3H]inositol phosphate accumulation caused by the various substances was not blocked by the antagonists prazosin, ketanserin, atropine, or mepyramine. In contrast, the antagonists prazosin, ketanserin, atropine and mepyramine selectively blocked stimulation of [3H]inositol phosphate accumulation caused by noradrenaline, serotonin, carbachol and histamine respectively. When desimipramine was substituted for lithium in the assay procedure, carbachol was ineffectual in stimulating [3H]inositol phosphate accumulation. In these experiments the control (unstimulated) values were much higher than in the normal (when lithium is present) assay procedure. Desimipramine is quite effective in stimulating [3H]inositol phosphate accumulation either in the presence or absence of lithium in the incubation medium. This is not the case for carbachol where it was essential to have lithium in the incubation medium in order to obtain a stimulation of [3H]inositol phosphate accumulation. Furthermore, in the case of carbachol stimulation, most of the radioactivity was associated with a peak corresponding to inositol monophosphate, while for desimipramine stimulation two clear peaks corresponding to inositol monophosphate and inositol bisphosphate were apparent.  相似文献   

19.
We investigated phospholipid signal transduction, calcium flux, O2- anion production and actin polymerization after stimulation with the C fragment and chemoattractant, C5a, and then determined how C5a pretreatment affected subsequent responses to formyl peptide in human neutrophils. We have previously demonstrated that the novel lipids, phosphatidylinositol trisphosphate (PIP3) and phosphatidylinositol(3,4)P2 (PI(3,4)P2), rise transiently in neutrophils after activation with formyl peptide. Furthermore, the rise in PIP3 parallels actin polymerization. In this study, neutrophils activated with C5a exhibited two distinct G protein-dependent signal pathways involving different phosphoinositides: 1) [32P]PI(4,5)P2 hydrolysis and [32P]PA production, and 2) the transient formation of D-3-phosphorylated phosphoinositides, [32P]PIP3 and [32P]PI(3,4)P2. When neutrophils were preincubated with C5a for 5 min before stimulation with formyl peptide, [32P]PI(4,5)P2 hydrolysis was unchanged, and [32P]PA production and O2- formation were slightly enhanced compared with controls stimulated with formyl peptide in the absence of C5a. In contrast, [32P]PIP3 production, right angle light scatter, and actin polymerization were all reduced 35 to 40%. Therefore, these data support the hypothesis that PIP3 plays a role in chemotaxis but not superoxide formation.  相似文献   

20.
Increased platelet aggregation and secretion in response to various agonists has been described in both diabetic humans and animals. Alterations in the platelet membrane fatty acid composition of phospholipids and changes in the prostacyclin and thromboxane formation could only partly explain the altered platelet function in diabetes. In the present study, we have examined the role of phosphoinositide turnover in the diabetic platelet function. We report alterations in 2-[3H] myo-inositol uptake, phosphoinositide turnover, inositol phosphate and diacylglycerol (DAG) formation, phosphoinositide mass, and phospholipase C activity in platelets obtained from streptozotocin (STZ)-induced diabetic rats. There was a significant increase in the 2-[3H) myo-inositol uptake in washed platelets from diabetic rats. Basal incorporation of 2-[3H] myo-inositol into phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol (PI) in platelets obtained from diabetic rats was, however, not affected. Thrombin stimulation of platelets from diabetic rats induced an increase in the hydrolysis of [32P]PIP2 but indicated no change in the hydrolysis of [32P]PIP and [32P]PI as compared to their basal levels. Thrombin-induced formation of [3H]inositol phosphates was significantly increased in both diabetic as well as in control platelets as compared to their basal levels. This formation of [3H]inositol phosphates in diabetic platelets was greater than controls at all time intervals studied. Similarly, there was an increase in the release of DAG after thrombin stimulation in the diabetic platelets. Based on these results, we conclude that there is an increase in the transport of myoinositol across the diabetic platelet membrane and this feature, along with alterations in the hydrolysis of PIP2, inositol phosphates and DAG in the diabetic platelets, may play a role in increased phosphoinositide turnover which could explain the altered platelet function in STZ-induced diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号