首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
The aim of this study was to evaluate the possible protective effects of caffeic acid phenethyl ester (CAPE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 18 male Sprague–Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received CAPE; each group contain 6 animals. The rats in CAPE treated groups were given CAPE (10 μmol/kg) once a day intraperitoneally (i.p) for 2 weeks starting just after BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, inflammatory cell infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with CAPE attenuated alterations in liver histology. The proliferating cell nuclear antigen and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme (superoxide dismutase (SOD), glutathione peroxidase (GPx)) activities. CAPE treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The data indicate that CAPE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of CAPE is associated with antioxidative potential.  相似文献   

3.
The aim of this study was to examine the preventive and therapeutic effects of thymoquinone (TQ) against cholestatic oxidative stress and liver damage in common bile duct ligated rats. A total of 24 male Sprague–Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received TQ; each group contain 8 animals. The rats in TQ treated groups were given TQ (50 mg/kg body weight) once a day orally for 2 weeks starting 3 days prior to BDL operation. To date, no more biochemical and histopathological changes on common bile duct ligated rats by TQ treatment have been reported. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme [superoxide dismutase (SOD), glutathione peroxidase (GPx)] activities. TQ treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with TQ attenuated alterations in liver histology. The immunopositivity of alpha smooth muscle actin and proliferating cell nuclear antigen in BDL were observed to be reduced with the TQ treatment. The present study demonstrates that oral administration of TQ in bile duct ligated rats maintained antioxidant defenses and reduces liver oxidative damage and ductular proliferation. This effect of TQ may be useful in the preservation of liver function in cholestasis.  相似文献   

4.
Mitochondria are known to be involved in cholestatic liver injury. The potential protective effect of resveratrol in cholestatic liver injury and the possible roles of autophagy and apoptosis induction in this process are not yet clear. The aim of this study is to determine whether resveratrol administration after bile duct ligation can reduce cholestasis-induced liver injury through modulating apoptosis, mitochondrial biogenesis and autophagy. A rat model of cholestasis was established by bile duct ligation (BDL) and compared with a sham group receiving laparotomy without BDL, with resveratrol or control treatments following BDL. The expression of proteins involved in the apoptotic and autophagic pathways were analyzed by western blotting. Apoptosis was examined by TUNEL staining. In the resveratrol/BDL group LC3-II upregulation persisted for 1-7 days, Bax was downregulated and catalase was upregulated at 3-7 days after resveratrol treatment. The decline in mitochondrial DNA copy number was reversed at 3-7 days. Caspase 3 expression was significantly downregulated at 3-7 days in the resveratrol group. TUNEL staining showed significant numbers of apoptotic liver cells appeared in livers 3-7 days after BDL and that was decreased by resveratrol treatment. Our results indicate that early resveratrol treatment reverses impaired liver function within hours of BDL.  相似文献   

5.
The aim of this study was to evaluate the possible protective effects of quercetin (QE) against cholestatic oxidative stress and liver damage in the common bile duct ligated rats. A total of 24 male Wistar albino rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received QE; each group contain 8 animals. The rats in QE treated groups were given QE (15 mg/kg) once a day intraperitoneally for 4 weeks starting 3 days prior to BDL operation. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with QE attenuated alterations in liver histology. The alpha smooth muscle actin (α-SMA), transforming growth factor beta (TGF-β1) positive cells and the activity of TUNEL in the BDL were observed to be reduced with the QE treatment. The data indicate that QE attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of QE is associated with antioxidative potential.  相似文献   

6.
Whereas long-term cholestasis results in intestinal alterations and increased permeability to hepatotoxins, the effect of short-term cholestasis is less known and was investigated in bile duct ligated (BDL) rats. In the intestinal mucosa, at Day 7 BDL, total glutathione and protein sulfhydryl contents had decreased, oxidized glutathione levels increased (P<0.05 vs baseline), and a reduced epithelium thickness with dissolving crypt phenomena was observed in 40% of rats. At Day 10, total protein content, glutathione-related enzyme activities, and the transmural electrophysiological activity had decreased (-50%); by contrast, oxidized proteins doubled (P<0.05), and histological changes were extended to 70% of rats. In vitro exposure to taurodeoxycholate at micellar concentrations determined dysepithelization in normal gut but dissolving crypt phenomena and necrosis in cholestatic bowels. In the liver, ongoing cholestasis was associated with early oxidative changes especially in mitochondria, where protein sulfhydryls were decreased and negatively correlated with glutathione-protein mixed disulfides (r=-0.807, P<0.001). Daily oral administration of tauroursodeoxycholate, a hydrophilic bile salt, and glutathione to BDL rats improved intestinal histology, function, and redox state. In conclusion, short-term cholestasis results in distinctive functional, oxidative, and morphological changes of intestinal mucosa, determined increased vulnerability to toxic injury, and parallel hepatic oxidative damage.  相似文献   

7.
Obstructive cholestasis causes liver injury via accumulation of toxic bile acids (BAs). Therapeutic options for cholestatic liver disease are limited, partially because the available murine disease models lack translational value. Profiling of time-related changes following bile duct ligation (BDL) in Gold Syrian hamsters revealed a biochemical response similar to cholestatic patients in terms of BA pool composition, alterations in hepatocyte BA transport and signaling, suppression of BA production, and adapted BA metabolism. Hamsters tolerated cholestasis well for up to 28 days and progressed relatively slowly to fibrotic liver injury. Hepatocellular necrosis was absent, which coincided with preserved intrahepatic energy levels and only mild oxidative stress. The histological response to cholestasis in hamsters was similar to the changes seen in 17 patients with prolonged obstructive cholestasis caused by cholangiocarcinoma. Hamsters moreover upregulated hepatic fibroblast growth factor 15 (Fgf15) expression in response to BDL, which is a cytoprotective adaptation to cholestasis that hitherto had only been documented in cholestatic human livers. Hamster models should therefore be added to the repertoire of animal models used to study the pathophysiology of cholestatic liver disease.  相似文献   

8.
Cholestatic liver disease is recognized by extreme collagen formation and deposition, which is mediated by free radicals. The aim of the current study was to investigate the probable hepatoprotective effects of hydroalcoholic extract of watercress (WC) against oxidative stress and liver injury in bile duct ligation (BDL)- induced cholestatic rats. A total of 32 male Wistar rats were divided into four groups; sham control (SC), BDL, SC + hydroalcoholic extract of WC and BDL + hydroalcoholic extract of WC. WC-treated rats received daily WC 500 mg/kg/day for 10 days. Biochemical tests, hepatic oxidative stress markers, and antioxidant enzymes activity were estimated. Further, liver hydroxyproline content was assayed and histological analysis was made. The BDL model markedly elevated the protein carbonyl (PCO) and hydroxyproline contents and decreased the glutathione peroxidase (GPx) activity. Hydroalcoholic extract of WC significantly decreased the surge in liver PCO and hydroxyproline levels and increased the reduced GPx enzyme activity contents in the hepatic tissue. As determined by hematoxylin and eosin staining, BDL considerably induced hepatocyte necrosis. Moreover, these changes were significantly attenuated by the hydroalcoholic extract of WC treatment. Our data indicate that the hydroalcoholic extract of WC extract attenuated liver damage in BDL rats by decreasing the hydroxyproline content and histopathological indexes. Also, it reduced oxidative stress by preventing the hepatic protein oxidation and enhancing the activity of the GPx enzyme via antioxidative effect and free-radical scavenging. Our findings suggest that hydroalcoholic extract of WC could be a beneficial new curative agent for cholestatic liver damage.  相似文献   

9.
In the liver, seven days of bile duct ligation (BDL) decreases the cytochrome P-450 content and the UDP-glucuronyl transferase activity. Also, a decrease in the water soluble antioxidant mechanism reflected in the activities of the enzymes superoxide dismutase (SOD), catalase and the glutathione peroxidase (GTPx) was found in the liver but not in the kidney. Despite an increase in the amount of the GSH in the liver, increased lipid peroxidation is produced in the BDL rats, as indicated by the levels of malondialdehyde (MDA). The kidney responded in a different way to cholestasis, decreasing only the UDP-glucuronyl transferase activity and increasing the levels of GSH and MDA. In the red blood cells the activity of the antioxidant enzymes SOD, GTPx and catalase and the content of GSH were not modulated by cholestasis. In conclusion, disturbance of the oxidant-antioxidant balance might be responsible for cholestatic liver injury and impaired renal function in BDL rats.  相似文献   

10.
In order to elucidate the relation between tissue eicosanoids and liver injury due to bile duct obstruction, we have examined the effects of iloprost, a stable analogue of prostaglandin I2 (PGI2), and UK 38485 (UK), an inhibitor of thromboxane synthetase, on prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in guinea pig liver. 56 male guinea pigs were divided into the following groups: (i) sham operations (SHAM), (ii) bile duct ligated (BDL) group, (iii) guinea pigs given UK (5 μg/kg body wt intraperitoneally 10 min, 8 h and 16 h after bile duct ligation), and (iv) guinea pigs treated with iloprost (ILO) (2 μg/kg body wt intraperitoneally 10 min, 8 h and 16 h after bile duct ligation). Liver damage was assessed by blind quantitation of liver cell necrosis. Bile duct ligation caused an increase in tissue PGE2-like activity and a decrease LTC4-like activity. But the most pronounced elevation of PGE2 was observed in ILO treated group. The LTC4-like activity level improved significantly in the UK-treated BDL group compared with the BDL only and ILO treated animals. Also, UK was found to be beneficial in preventing the liver cell necrosis due to cholestasis. It is concluded that the ratio of PGE2/LTC4 in liver is a valuable marker for cholestatic injury.  相似文献   

11.
12.
13.
ProjectCholestasis liver fibrosis has been increasingly recognized as a cause of high morbidity and mortality in humans. The accumulation of toxic bile salts in a bile duct ligation (BDL) animal model plays a pivotal role in the induction of liver fibrosis. Cholestatic liver fibrosis is characterized by excessive collagen production and deposition, which is mediated by reactive oxygen species (ROS). Molybdenum is an essential micronutrient trace element which acts as a cofactor in many detoxification system enzymes. The aim of the present study was to evaluate the antifibrotic effect of sodium molybdate on liver cholestasis induced by bile duct ligation in rats.ProcedureAfter BDL, rats were given sodium molybdate (0.05 or 0.1 or 0.2 g/kg) or urosodeoxycholic acid (UDCA, 25 mg/kg) via intragastric gavage for 45 consecutive days (once per day).ResultsBDL drastically increased the serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin and direct bilirubin, whereas it reduced the levels of antioxidant enzymes, superoxide dismutase and catalase in the liver. Treatment of BDL rats with sodium molybdate significantly attenuated these changes. As determined by Masson's trichrome staining, BDL markedly induced the liver fibrosis. These alterations were also significantly attenuated by sodium molybdate administration.ConclusionsThe results of this study indicate the hepatoprotective and antifibrotic effect of sodium molybdate in the cholestatic liver. Sodium molybdate, by inhibiting the activation of Ito cells, decreases the collagen production in the liver. The antifibrotic effect of sodium molybdate is likely due to the antioxidative and free radical scavenging effects of this trace element.  相似文献   

14.
Mitochondria frequently change their shape through fission and fusion in response to physiological stimuli as well as pathological insults. Disrupted mitochondrial morphology has been observed in cholestatic liver disease. However, the role of mitochondrial shape change in cholestasis is not defined. In this study, using in vitro and in vivo models of bile acid-induced liver injury, we investigated the contribution of mitochondrial morphology to the pathogenesis of cholestatic liver disease. We found that the toxic bile salt glycochenodeoxycholate (GCDC) rapidly fragmented mitochondria, both in primary mouse hepatocytes and in the bile transporter-expressing hepatic cell line McNtcp.24, leading to a significant increase in cell death. GCDC-induced mitochondrial fragmentation was associated with an increase in reactive oxygen species (ROS) levels. We found that preventing mitochondrial fragmentation in GCDC by inhibiting mitochondrial fission significantly decreased not only ROS levels but also cell death. We also induced cholestasis in mouse livers via common bile duct ligation. Using a transgenic mouse model inducibly expressing a dominant-negative fission mutant specifically in the liver, we demonstrated that decreasing mitochondrial fission substantially diminished ROS levels, liver injury, and fibrosis under cholestatic conditions. Taken together, our results provide new evidence that controlling mitochondrial fission is an effective strategy for ameliorating cholestatic liver injury.  相似文献   

15.
In most vertebrates, the liver produces bile that is necessary to emulsify absorbed fats and enable the digestion of lipids in the small intestine as well as to excrete bilirubin and other metabolic products. In the liver, the experimental obstruction of the extrahepatic biliary system initiates a complex cascade of pathological events that leads to cholestasis and inflammation resulting in a strong fibrotic reaction originating from the periportal fields. Therefore, surgical ligation of the common bile duct has become the most commonly used model to induce obstructive cholestatic injury in rodents and to study the molecular and cellular events that underlie these pathophysiological mechanisms induced by inappropriate bile flow. In recent years, different surgical techniques have been described that either allow reconnection or reanastomosis after bile duct ligation (BDL), e.g., partial BDL, or other microsurgical methods for specific research questions. However, the most frequently used model is the complete obstruction of the common bile duct that induces a strong fibrotic response after 21 to 28 days. The mortality rate can be high due to infectious complications or technical inaccuracies. Here we provide a detailed surgical procedure for the BDL model in mice that induce a highly reproducible fibrotic response in accordance to the 3R rule for animal welfare postulated by Russel and Burch in 1959.  相似文献   

16.
CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is a key component in endoplasmic reticulum (ER) stress-mediated apoptosis. The goal of the study was to investigate the role of CHOP in cholestatic liver injury. Acute liver injury and liver fibrosis were assessed in wild-type (WT) and CHOP-deficient mice following bile duct ligation (BDL). In WT livers, BDL induced overexpression of CHOP and Bax, a downstream target in the CHOP-mediated ER stress pathway. Liver fibrosis was attenuated in CHOP-knockout mice. Expression levels of alpha-smooth muscle actin and transforming growth factor-beta1 were reduced, and apoptotic and necrotic hepatocyte death were both attenuated in CHOP-deficient mice. Hepatocytes were isolated from WT and CHOP-deficient mice and treated with 400 microM glycochenodeoxycholic acid (GCDCA) for 8 h to examine bile acid-induced apoptosis and necrosis. GCDCA induced overexpression of CHOP and Bax in isolated WT hepatocytes, whereas CHOP-deficient hepatocytes had reduced cleaved caspase-3 expression and a lower propidium iodide index after GCDCA treatment. In conclusion, cholestasis induces CHOP-mediated ER stress and triggers hepatocyte cell death, and CHOP deficiency attenuates this cell death and subsequent liver fibrosis. The results demonstrate an essential role of CHOP in development of liver fibrosis due to cholestatic liver damage.  相似文献   

17.
High plasma concentrations of bile acids (BA) and bilirubin are hallmarks of cholestasis. BA are implicated in the pathogenesis of cholestatic liver damage through mechanisms involving oxidative stress, whereas bilirubin is a strong antioxidant. We evaluated the roles of bilirubin and BA on mediating oxidative stress in rats following bile duct ligation (BDL). Adult female Wistar and Gunn rats intraperitoneally anaesthetized with ketamine and xylazine underwent BDL or sham operation. Cholestatic markers, antioxidant capacity, lipid peroxidation and heme oxygenase (HO) activity were determined in plasma and/or liver tissue 5 days after surgery. HepG2‐rNtcp cells were used for in vitro experiments. Plasma bilirubin levels in control and BDL animals positively correlated with plasma antioxidant capacity. Peroxyl radical scavenging capacity was significantly higher in the plasma of BDL Wistar rats (210 ± 12%, P < 0.0001) compared to controls, but not in the liver tissues. Furthermore after BDL, lipid peroxidation in the livers increased (179 ± 37%, P < 0.01), whereas liver HO activity significantly decreased to 61% of control levels (P < 0.001). Addition of taurocholic acid (TCA, ≥50 μmol/l) to liver homogenates increased lipid peroxidation (P < 0.01) in Wistar, but not in Gunn rats or after the addition of bilirubin. In HepG2‐rNtcp cells, TCA decreased both HO activity and intracellular bilirubin levels. We conclude that even though plasma bilirubin is a marker of cholestasis and hepatocyte dysfunction, it is also an endogenous antioxidant, which may counteract the pro‐oxidative effects of BA in circulation. However, in an animal model of obstructive cholestasis, we found that BA compromise intracellular bilirubin levels making hepatocytes more susceptible to oxidative damage.  相似文献   

18.
19.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 μmol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号