首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogens known so far. N 5 N 10 -Methylenetetrahydromethanopterin reductase, an enzyme involved in methanogenesis from CO2, was purified from this hyperthermophile. The apparent molecular mass of the native enzyme was found to be 300 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only one polypeptide of apparent molecular mass 38 kDa. The ultraviolet/visible spectrum of the enzyme was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was specific for reduced coenzyme F420 as electron donor; NADH, NADPH or reduced dyes could not substitute for the 5-deazaflavin. The catalytic mechanism was found to be of the ternary complex type as deduced from initial velocity plots. V max at 65°C and pH 6.8 was 435 U/mg (kcat=275 s-1) and the K m for methylenetetrahydro-methanopterin and for reduced F420 were 6 M and 4 M, respectively. From Arrhenius plots an activation energy of 34 kJ/mol was determined. The Q 10 between 40°C and 90°C was 1.5.The reductase activity was found to be stimulated over 100-fold by sulfate and by phosphate. Maximal stimulation (100-fold) was observed at a sulfate concentration of 2.2 M and at a phosphate concentration of 2.5 M. Sodium-, potassium-, and ammonium salts of these anions were equally effective. Chloride, however, could not substitute for sulfate or phosphate in stimulating the enzyme activity.The thermostability of the reductase was found to be very low in the absence of salts. In their presence, however, the reductase was highly thermostable. Salt concentrations between 0.1 M and 1.5 M were required for maximal stability. Potassium salts proved more effective than ammonium salts, and the latter more effective than sodium salts in stabilizing the enzyme activity. The anion was of less importance.The N-terminal amino acid sequence of the reductase from M. kandleri was determined and compared with that of the enzyme from Methanobacterium thermoautotrophicum and Methanosarcina barkeri. Significant similarity was found.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5 ,N 10 -methylene-H4MPT - CH3-H4MPT N 5-methyl-H4MPT - CHH4MPT+ N 5 ,N 10 -methenyl-H4MPT - F420 coenzyme F420; 1 U=1 mol/min  相似文献   

2.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

3.
H2-FormingN 5,N10-methylenetetrahydromethanopterin dehydrogenase (Hmd) is a novel type of hydrogenase found in methanogenic Achaea that contains neither nickel nor iron-sulfur clusters. The enzyme has previously been characterized fromMethanobacterium thermoautotrophicum and fromMethanopyrus kandleri. We report here on the purification and properties of the enzyme fromMethanococcus thermolithotrophicus. Thehmd gene was cloned and sequenced. The results indicate that the enzyme fromMc. thermolithotrophicus is functionally and structurally closely related to the H2-forming methylene tetrahydromethanopterin dehydrogenase fromMb. thermoautotrophicum andMp. kandleri. From amino acid sequence comparisons of the three enzymes, a phylogenetic tree was deduced that shows branching orders similar to those derived from sequence comparisons of the 16S rRNA of the orders Methanococcales, Methanobacteriales, and Methanopyrales.Abbreviations H 2 Forming dehydrogenase orHmd - H2-FormingN 5,N10 methylene tetrahydromethanopterin dehydrogenase - H 4MPT Tetrahydromethanopterin - CH 2=H4MPT N5,N10 Methylene tetrahydromethanopterin - CHH 4MPT+ N5,N10 Methenyltetrahydromethanopterin - MALDI-TOF-MS Matrix-assisted laser desorption  相似文献   

4.
The activity of purified N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase from Methanopyrus kandleri was found to increase up to 200-fold when potassium phosphate was added in high concentrations (1.5 M) to the assay. A 200-fold stimulation was also observed with sodium phosphate (1 M) and sodium sulfate (1 M) whereas stimulation by potassium sulfate (0.8 M), ammonium sulfate (1.5 M), potassium chloride (2.5 M), and sodium chloride (2 M) was maximal 100-fold. A detailed kinetic analysis of the effect of potassium phosphate revealed that this salt exerted its stimulatory effect by decreasing the K m for N 5,N 10-methenyltetrahydromethanopterin from 2 mM to 40 M and by increasing the V max from 2000 U/mg (kcat=1385 s-1) to 13300 U/mg (kcat=9200 s-1). Besides increasing the catalytic efficiency (kcat/K m) salts were found to protect the cyclohydrolase from heat inactivation. For maximal thermostability much lower concentrations (0.1 M) of salts were required than for maximal activity.Abbreviations H4MPT tetrahydromethanopterin - N 5,N 10-methenyl-H4MPT - CHO-H4MPT N 5-formyl-H4-MPT - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4-MPT N 5-methyl-H4MPT - MOPS -N-morpholinopropane sulfonic acid - TRICINE N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

5.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogen known so far. Methyl-coenzyme M reductase, the enzyme catalyzing the methane forming step in the energy metabolism of methanogens, was purified from this hyperthermophile. The yellow protein with an absorption maximum at 425 nm was found to be similar to the methyl-coenzyme M reductase from other methanogenic bacteria in that it was composed each of two -, - and -subunits and that it contained the nickel porphinoid coenzyme F430 as prosthetic group. The purified reductase was inactive. The N-terminal amino acid sequence of the -subunit was determined. A comparison with the N-terminal sequences of the -subunit of methyl-coenzyme M reductases from other methanogenic bacteria revealed a high degree of similarity.Besides methyl-coenzyme M reductase cell extracts of M. kandleri were shown to contain the following enzyme activities involved in methanogenesis from CO2 (apparent Vmax at 65°C): formylmethanofuran dehydrogenase, 0.3 U/mg protein; formyl-methanofuran: tetrahydromethanopterin formyltransferase, 13 U/mg; N 5,N10-methenyltetrahydromethanopterin cyclohydrolase, 14 U/mg; N 5,N10-methylenetetrahydromethanopterin dehydrogenase (H2-forming), 33 U/mg; N 5,N10-methylenetetrahydromethanopterin reductase (coenzyme F420 dependent), 4 U/mg; heterodisulfide reductase, 2 U/mg; coenzyme F420-reducing hydrogenase, 0.01 U/mg; and methylviologen-reducing hydrogenase, 2.5 U/mg. Apparent Km values for these enzymes and the effect of salts on their activities were determined.The coenzyme F420 present in M. kandleri was identified as coenzyme F420-2 with 2 -glutamyl residues.Abbreviations H–S-CoM coenzyme M - CH3–S-CoM methylcoenzyme M - H–S-HTP 7-mercaptoheptanoylthreonine phosphate - MFR methanofuran - CHO-MFR formyl-MFR - H4MPT tetrahydromethanopterin - CHO–H4MPT N 5-formyl-H4MPT - CH=H4MPT+ N 5,N10-methenyl-H4MPT - CH2=H4MPT N 5,N10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - F420 coenzyme F420 - 1 U= 1 mol/min  相似文献   

6.
N 5,N 10-Methenyltetrahydromethanopterin cyclohydrolase (Mch) is an enzyme involved in methanogenesis from CO2 and H2 which represents the energy metabolism of Methanopyrus kandleri, a methanogenic Archaeon growing at a temperature optimum of 98°C. The gene mch from M. kandleri was cloned, sequenced, and expressed in Escherichia coli. The overproduced enzyme could be purified in yields above 90% in one step by chromatography on phenyl Sepharose in 80% ammonium sulfate. From 3.5 g cells (250 mg protein), approximately 18 mg cyclohydrolase was obtained. The purified enzyme showed essentially the same catalytic properties as the enzyme purified from M. kandleri cells. The primary structure and properties of the cyclohydrolase are compared with those of the enzyme from Methanococcus jannaschii (growth temperature optimum 85°C), from Methanobacterium thermoautotrophicum (65°C), and from Methanosarcina barkeri (37°C). Of the four enzymes, that from M. kandleri has the lowest isoelectric point (3.8) and the lowest hydrophobicity of amino acid composition. Besides, it has the highest relative content of glutamate, leucine, and valine and the lowest relative content of isoleucine, serine, and lysine. Some of these properties are unusual for enzymes from hyperthermophilic organisms. They may reflect the observation that the cyclohydrolase from M. kandleri is not only adapted to hyperthermophilic conditions but also to the high intracellular concentrations of lyotrophic salts prevailing in this organism. Received: July 14, 1997 / Accepted: August 28, 1997  相似文献   

7.
The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.  相似文献   

8.
Archaeoglobus fulgidus and Methanopyrus kandleri are both extremely thermophilic Archaea with a growth temperature optimum at 83°C and 98°C, respectively. Both Archaea contain an active N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase. The enzyme from M. kandleri has recently been characterized. We describe here the purification and properties of the enzyme from A. fulgidus.The cyclohydrolase from A. fulgidus was purified 180-fold to apparent homogeneity and its properties were compared with those recently published for the cyclohydrolase from M. kandleri. The two cytoplasmic enzymes were found to have very similar molecular and catalytic properties. They differed, however, significantly with respect of the effect of K2HPO4 and of other salts on the activity and the stability. The cyclohydrolase from A. fulgidus required relatively high concentrations of K2HPO4 (1 M) for optimal thermostability at 90°C but did not require salts for activity. Vice versa, the enzyme from M. kandleri was dependent on high K2HPO4 concentrations (1.5 M) for optimal activity but not for thermostability. Thus the activity and structural stability of the two thermophilic enzymes depend in a completely different way on the concentration of inorganic salts. The molecular basis for these differences are discussed.Abbreviations H4MPT tetrahydromethanopterin - MFR methanofuran - CH3–H4MPT N 5-methyl-H4MPT - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH2H4MPT N 5,N 10-methenyl-H4MPT - CHO–H4MPT N 5 formyl-H4MPT - CHO-MFR formyl-MFR - cyclohydrolase N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase - MOPS 3-(N-morpholino) propane sulfonic acid - TRICINE N-tris (hydroxymethyl) methyl glycine - 1 U=1 mol/min  相似文献   

9.
The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme - F420 formyltransferase, formylmethanofuran: tetrahydromethanopterin formyltransferase - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - methylene-H4MPT recductase N 5,N 10-methylenetetrahydromethanopterin reductase - cyclohydrolase N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase - APS adenosine 5-phosphosulfate - MOPS 3-(N-morpholino) propane sulfonic acid - TRICINE N-tris(hydroxymethyl)methylglycine - MES morpholinoethanesulfonic acid - 1 U 1 mol/min  相似文献   

10.
Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 M, a K m for F420H2 of 4 M, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - CHH4MPT methenyl-H4MPT - F420 coenzyme F420 - MFR methanofuran - CHO-MFR formyl-MFR - 1 U 1 mol/min  相似文献   

11.
The fourth reaction step of CO(2)-reduction to methane in methanogenic archaea is catalyzed by coenzyme F(420)-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd). We have structurally characterized this enzyme in the selenomethionine-labelled form from the hyperthermophilic methanogenic archaeon Methanopyrus kandleri at 1.54A resolution using the single wavelength anomalous dispersion method for phase determination. Mtd was found to be a homohexameric protein complex that is organized as a trimer of dimers. The fold of the individual subunits is composed of two domains: a larger alpha,beta domain and a smaller helix bundle domain with a short C-terminal beta-sheet segment. In the homohexamer the alpha,beta domains are positioned at the outside of the enzyme, whereas, the helix bundle domains assemble towards the inside to form an unusual quarternary structure with a 12-helix bundle around a 3-fold axis. No structural similarities are detectable to other enzymes with F(420) and/or substituted tetrahydropterins as substrates. The substrate binding sites of F(420) and methylenetetrahydromethanopterin are most likely embedded into a crevice between the domains of one subunit, their isoalloxazine and tetrahydropterin rings being placed inside a pocket formed by this crevice and a loop segment of the adjacent monomer of the dimer. Mtd revealed the highest stability at low salt concentrations of all structurally characterized enzymes from M.kandleri. This finding might be due to the compact quaternary structure that buries 36% of the monomer surface and to the large number of ion pairs.  相似文献   

12.
Hatanaka  Shin-Ichi  Furukawa  Jun  Aoki  Toshio  Akatsuka  Hirokazu  Nagasawa  Eiji 《Mycoscience》1994,35(4):391-394
Combining different chromatography systems, unusual nonprotein amino acids were isolated and unequivocally identified from a small amount (less than 100 g fresh weight) ofAmanita gymnopus fruit body. Without obtaining crystals of these amino acids, on the basis of1H-NMR determination, high resolution mass spectrometry, chlorine analysis and oxidation with L-amino acid oxidase, one of them proved to be a new chloroamino acid, (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid (G2). The other three were (2S)-2-amino-5-hexenoic acid (G1), (2S)-2-amino-4,5-hexadienoic acid (G3) and (2S)-2-amino-5-hexynoic acid (G4). Amino acid (G1) was also encountered for the first time in natural products. Amino acid (G3) has been reported from several kinds of fungi belonging toAmanita, subgenusLepidella. The occurrence of amino acid (G4) was already reported fromCortinarius claricolor.Part 23 in the series Biochemical studies of nitrogen compounds in fungi. Part 22, Hatanaka, S. I. et al. 1985. Trans. Mycol. Soc. Japan26: 61–68.  相似文献   

13.
A chlorine-containing non-protein amino acid which was recently discovered from the fruit bodies ofAmanita gymnopus (2S)-2-amino-5-chloro-4-hydroxy-5-hexenoic acid, was isolated and crystallized for the first time from the fruit bodies of an unknown member ofAmanita belonging to the sectionRoanokenses, subsectionSolitariae. The results of elementary analyses, determination of optical rotations,1H- and13C-NMR-spectra, and some chemical reactions supported an earlier proposed structure.Part 24 in the series Biochemical studies of nitrogen compounds in fungi. for Part 23, see Hatanaka, S. I. et al. 1994. this journal35: 391–394.  相似文献   

14.
Influenza A viruses of subtype H9N2 are wide spread among poultry and other mammalian species. Crossing the species barrier from poultry to human occurred in recent years creating a pandemic of H9N2 virus. It is known that the pathogenicity of H9N2 is lower than H5N1. Nonetheless, it is important to establish the molecular functions of H9N2 viral proteins. We studied mutations in the polymerase protein PB2 of H9N2 from different strains and compared it with the highly pathogenic H5N1. The mutation M294T was found to be important in the N-myristoylation domain of Ck/UP/2573/India/04(H9N2) isolate. Prediction of secondary structures and PROSITE motif assignments were performed for PB2 to gain functional insight. Subsequently, the effect of mutations in secondary structures among strains is discussed.  相似文献   

15.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

16.
Three pyrones and a 2(5H)-furanone, designated pectinolides D-G, have been isolated from the dichloromethane extract of Hyptis pectinata. The metabolites were characterized on the basis of 1D and 2D NMR spectroscopic techniques. The pyrones were identified as 6S-[3S,6S-(diacetoxy)-5R-hydroxy-1Z-heptenyl]-5S-hydroxy-5,6-dihydro-2H-pyran-2-one (1)- pectinolide D, 6S-[3S,5R,6S-(triacetoxy)-1Z-heptenyl]-5S-acetoxy-5,6-dihydro-2H-pyran-2-one (2)- pectinolide E and 6S-[3S,5R,6S-(triacetoxy)-1Z-heptenyl]-5S-acetoxy-4R-methoxy-3,4,5,6-tetrahydro-4H pyran-2-one (3)- pectinolide F. The furanone was identified as [2'Z,5(1')Z] 5-(4'S,6'R,7'S-triacetoxy-2-octenylidene)-2(5H)-furanone (4)-pectinolide G.  相似文献   

17.
The trisaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 1 and the tetrasaccharide 2-(p-trifluoroacetamidophenyl)ethyl 2-acetamido-2-deoxy-3-O-(-l-fucopyranosyl)-4-O-[2-O-(-l-fucopyranosyl)--d-galactopyranosyl]--d-glucopyranoside 2 were synthesized. Thioglycosides, suitably protected, activated directly with methyl trifluoromethanesulfonate or dimethyl(methylthio)sulfonium tetrafluoroborate or activated after bromine treatment with halophilic reagents, were used as glycosyl donors in the construction of the glycosidic linkages.Abbreviations DMTSB dimethyl(methylthio)sulfonium tetrafluoroborate - Phth phthaloyl - MBn p-methoxybenzyl - ClBn p-chlorobenzyl  相似文献   

18.
The effect of water deficit on nodulation, N2 fixation, photosynthesis, and total soluble sugars and leghemoglobin in nodules was investigated in cowpea and groundnut. Nitrogenase activity completely ceased in cowpea with a decrease in leaf water potential ( leaf) from –0.4 MPa to –0.9 MPa, while in groundnut it continued down to –1.7 MPa. With increasing water stress, the acetylene reduction activity (ARA) declined very sharply in cowpea, but ARA gradually decreased in groundnut. Even with mild water stress ( leaf of 0.2 MPa), nodule fresh weight declined 50% in cowpea partly due to a severe nodule shedding whereas nodule fresh weight declined in groundnut only when leaf decreased by 1.0 MPa. No nodule shedding was noticed even at a higher stress level in groundnut. Photosynthesis and stomatal conductance were also more stable in groundnut than in cowpea under water stress. There was a sharp increase in total soluble sugars and leghemoglobin in the nodules of groundut with water stress, but no definite trend could be found in cowpea.  相似文献   

19.
An NADPH-specific NDH-1 sub-complex was separated by native-polyacrylamide gel electrophoresis and detected by activity staining from the whole cell extracts of Synechocystis PCC6803. Low CO2 caused an increase in the activity of this sub-complex quickly, accompanied by an evident increase in the expression of NdhK and PSI-driven NADPH oxidation activity that can reflect the activity of NDH-1-mediated cyclic electron transport. During incubation with high CO2, the activities of NDH-1 sub-complex and PSI-driven NADPH oxidation as well as the protein level of NdhK slightly increased at the beginning, but decreased evidently in various degrees along with incubation time. These results suggest that CO2 concentration in vitro as a signal can control the activity of NDH-1 complex, and NDH-1 complex may in turn function in the regulation of CO2 uptake.  相似文献   

20.
Employing deoxyoligonucleotide probes and Southern hybridizations, we have examined in carboxydotrophic bacteria the localization on the genome of genes encoding the large, medium and small subunits of CO dehydrogenase (coxL, M and S, respectively). In Pseudomonas carboxydovorans OM5 coxL, M and S were identified on the plasmid pHCG3; they were absent on the chromosome. This was evident from positive hybridizations with plasmid DNA of the wild-type strain OM5 and the absence of hybridizations with chromosomal DNA from the plasmid cured mutant strain OM5–12. The genes coxL, M and S were found on plasmids in all other plasmid-containing carboxydotrophic bacteria e.g. Alcaligenes carboxydus, Azomonas B1, Pseudomonas carboxydoflava, Pseudomonas carboxydovorans OM2 and OM4. Cox L, M and S could be identified on the chromosome of the plasmid-free bacteria Arthrobacter 11/x, Bacillus schlegelii, Pseudomonas carboxydohydrogena, and Pseudomonas carboxydovorans OM3. These results essentially confirm and extend former reports that cox genes are rather conserved among carboxydotrophic bacteria of distinct taxonomic position. However, Streptomyces thermoautotrophicus is an noteworthy exception since none of the three cox genes could be detected. This refers to a new type of CO dehydrogenase and is in accord with results indicating that the S. thermoautotrophicus CO dehydrogenase has an unusual electron acceptor specificity and some other properties setting it apart from the classical CO dehydrogenases.Abbreviations CODH carbon monoxide dehydrogenase - H2ase hydrogenase - kb kilobase - PRK phosphoribulokinase - Rubisco ribulosebisphosphate carboxylase - SDS sodium dodecylsulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号