首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human tissue kallikrein (KLK) family of serine proteases, which is important in post-translational processing events, currently consists of just three genes-tissue kallikrein (KLK1), KLK2, and prostate-specific antigen (PSA) (KLK3)-clustered at chromosome 19q13. 3-13.4. We identified an expressed sequence tag from an endometrial carcinoma cDNA library with 50% identity to the three known KLK genes. Primers designed to putative exon 2 and exon 3 regions from this novel kallikrein-related sequence were used to polymerase chain reaction-screen five cosmids spanning 130 kb around the KLK locus on chromosome 19. This new gene, which we have named KLK4, is 25 kb downstream of the KLK2 gene and follows a region that includes two other putative KLK-like gene fragments. KLK4 spans 5.2 kb, has an identical genomic structure-five exons and four introns-to the other KLK genes and is transcribed on the reverse strand, in the same direction as KLK1 but opposite to that of KLK2 and KLK3. It encodes a 254-amino acid prepro-serine protease that is most similar (78% identical) to pig enamel matrix serine protease but is also 37% identical to PSA. These data suggest that the human kallikrein gene family locus on chromosome 19 is larger than previously thought and also indicate a greater sequence divergence within this family compared with the highly conserved rodent kallikrein genes.  相似文献   

2.
The amino acid sequence of human prostate-specific antigen (APS) suggests that it is a member of the glandular kallikrein subfamily of serine proteases. In the mouse, the kallikrein-like family is localized in a single locus on chromosome 7, while other serine proteases are distributed over a variety of different chromosomes. To investigate the physical relationship between the human kallikrein genes, we have used in situ hybridization and Southern analysis of a human x mouse somatic cell hybrid panel to map the APS gene to 19q13, concordant with the renal kallikrein KLK1 gene. This finding indicates that APS is a member of a human kallikrein-like gene family with analogous organization to that of the mouse.  相似文献   

3.
4.
The gene of tissue kallikrein and closely related genes constitute the glandular kallikrein (GK) gene family. The number of members varies between species, ranging from three human to 25 murine. Recently, the gene family was extended with 12 new members, KLK4-KLK15, that were identified adjacent to the classical GK genes on human chromosome 19. In this report, the structure and phylogeny of the mouse GK gene locus are described. A comparison of the human and murine loci shows that the locations of the tissue kallikrein gene and KLK4-KLK15 are conserved. The region between the tissue kallikrein gene and KLK15, devoid of genes in human, is expanded and contains 23 classical GK genes in mouse. Downstream of KLK15, where the genes encoding PSA and hK2 are located in human, mouse carries the pseudogene PsimGK25. Phylogenetic analyses show that classical GK genes emerged after the separation of the primate and rodent lineages, forming a subgroup within the newly extended GK family.  相似文献   

5.
Humans possess 3 fully characterized kallikrein-like genes. The gene expressed in kidney, pancreas and salivary gland (KLK), and the gene encoding prostate-specific antigen (APS) have been localized to chromosome 19q13.2-qter. The present study describes the localization of the remaining gene, hGK-1, which has highest homology to and a similar tissue specificity of expression as the APS gene. Using a [3H]-labeled probe derived from a hGK-1 genomic clone, we demonstrated hybridization confined to the q13.3 and q13.4 bands of chromosome 19 and suggest that kallikrein genes may possibly be located near the border of these two bands.  相似文献   

6.
7.
Kallikreins are a subgroup of serine proteases with diverse physiological functions. Growing evidence suggests that many kallikreins are implicated in carcinogenesis. By using molecular cloning techniques, we identified a new human kallikrein gene, tentatively named KLK15 (for kallikrein 15 gene). This new gene maps to chromosome 19q13.4 and is located between the KLK1 and KLK3 genes. KLK15 is formed of five coding exons and four introns, and shows structural similarity to other kallikreins and kallikrein-like genes. KLK15 has three alternatively spliced forms and is primarily expressed in the thyroid gland and to a lower extent in the prostate, salivary, and adrenal glands and in the colon testis and kidney. Our preliminary results indicate that the expression of KLK15 is up-regulated by steroid hormones in the LNCaP prostate cancer cell line. The KLK15 gene is also up-regulated, at the mRNA level, in prostate cancer in comparison to normal prostatic tissue. KLK15 up-regulation was found to be associated with more aggressive forms of prostate cancer. This newly discovered gene has the potential of being used as a diagnostic and/or prognostic marker for prostate cancer.  相似文献   

8.
9.
CpG islands of the X chromosome are gene associated.   总被引:6,自引:0,他引:6       下载免费PDF全文
Unmethylated CpG rich islands are a feature of vertebrate DNA: they are associated with housekeeping and many tissue specific genes. CpG islands on the active X chromosome of mammals are also unmethylated. However, islands on the inactive X chromosome are heavily methylated. We have identified a CpG island in the 5' region of the G6PD gene, and two islands forty Kb 3' from the G6PD gene, on the human X chromosome. Expression of the G6PD gene is associated with concordant demethylation of all three CpG islands. We have shown that one of the two islands is in the promoter region of a housekeeping gene, GdX. In this paper we show that the second CpG island is also associated with a gene, P3. The P3 gene has no homology to previously described genes. It is a single copy, 4 kb gene, conserved in evolution, and it has the features of a housekeeping two genes is within the CpG island and that sequences in the islands have promoter function.  相似文献   

10.
11.
Kallikrein gene families have been identified previously in genomes of the human, the mouse, and the rat, and individual kallikrein-like genes have been found in many more species. This study presents the in silico identification of kallikrein gene families in the recently sequenced genomes of four additional mammalian species, the chimpanzee, the dog, the pig, and the opossum. Phylogenies were constructed with gene sequences from all seven mammalian families, using Bayesian analysis, which clarified the evolutionary relationships between these genes. Individual gene sequences, as well as concatenated constructs of multiple sequences, were used. Fifteen kallikrein genes were located in the chimpanzee (Pan troglodytes) genome, while only 14 were identified in the canine (Canis familiaris) genome as no orthologue to human KLK3 was found. Thirteen genes were identified from the pig (Sus scrofa) genome, which lacked homologues to KLK2 and KLK3, and 11 genes, orthologous to human KLK5 through KLK15, were found in the opossum (Monodelphis domestica) genome. No kallikrein genes were identified from the available genome sequences of the chicken (Gallus gallus) or African clawed frog (Xenopus tropicalis). Within the family of kallikreins several subfamilies were suggested by phylogenetic analysis. One consisted of KLK4, KLK5, and KLK14; another of KLK9, KLK11, and KLK15; a third of KLK10 and KLK12; a fourth of KLK6 and KLK13; and finally one of KLK8 and the classical kallikreins (KLK1, KLK2, and KLK3).  相似文献   

12.
The human kallikrein locus on chromosome 19 consists of 15 genes encoding serine proteases. Here we review studies on their evolution, which demonstrate that there are several taxon-unique KLK1 paralogs in mouse, rat and horse, but not in primates and many other mammals. Furthermore, the duplication yielding KLK2 and prostate-specific antigen (KLK3) appears to be specific to primates, but a functional progenitor to KLK2 is expressed in the dog prostate. The linkage to a locus of possible regulatory protease inhibitors on chromosome 20 is discussed, as is the potential role of the kallikrein locus in innate immunity.  相似文献   

13.
14.
Yousef GM  Diamandis EP 《Genomics》2000,65(2):184-194
In rodents, kallikreins are encoded by a large multigene family but in humans, only three kallikrein genes were thought to exist. Based on the homology between the human and the rodent kallikrein loci, we defined a 300-kb human kallikrein gene region on chromosome 19q13. 3-q13.4. By using linear sequence information, restriction analysis, PCR, and blotting techniques, we were able to construct the first detailed map of the human kallikrein gene locus. Comparative analysis of genes located in this area enabled us to expand the human kallikrein multigene family with some recently identified serine proteases and establish common structural features. We further identified a new kallikrein-like gene, named kallikrein-like gene 3 (KLK-L3; HGMW-approved symbol KLK9). We describe the structural characterization of the KLK-L3 gene, together with its precise chromosomal localization in relation to other kallikreins and its tissue expression pattern and hormonal regulation.  相似文献   

15.
16.
Hybridization studies using a panel of somatic cell hybrids with subchromosomal segments of 19q have localized the genes encoding hormone-sensitive lipase (LIPE), carcinoembryonic antigen (CEA), and small nuclear ribonucleoprotein polypeptide A (SNRPA) to various regions of 19q13.1; the cellular receptor for poliovirus sensitivity (PVS) to 19q13.2; and the genes coding for prostate-specific antigen (APS), human pancreatic kallikrein (KLK1), and small nuclear ribonucleoprotein 70-kD polypeptide (SNRP70) to 19q13.3----qter. Our results exclude several of these genes from being seriously considered as a candidate for the myotonic dystrophy gene on 19q.  相似文献   

17.
18.
19.
Aberrant methylation of CpG-dense islands in the promoter regions of genes is an acquired epigenetic alteration associated with the silencing of tumor suppressor genes in human cancers. In a screen for endogenous targets of methylation-mediated gene silencing, we identified a novel CpG island-associated gene, TMS1, which is aberrantly methylated and silenced in response to the ectopic expression of DNA methyltransferase-1. TMS1 functions in the regulation of apoptosis and is frequently methylated and silenced in human breast cancers. In this study, we characterized the methylation pattern and chromatin architecture of the TMS1 locus in normal fibroblasts and determined the changes associated with its progressive methylation. In normal fibroblasts expressing TMS1, the CpG island is defined by an unmethylated domain that is separated from densely methylated flanking DNA by distinct 5' and 3' boundaries. Analysis of the nucleoprotein architecture of the locus in intact nuclei revealed three DNase I-hypersensitive sites that map within the CpG island. Strikingly, two of these sites coincided with the 5'- and 3'-methylation boundaries. Methylation of the TMS1 CpG island was accompanied by loss of hypersensitive site formation, hypoacetylation of histones H3 and H4, and gene silencing. This altered chromatin structure was confined to the CpG island and occurred without significant changes in methylation, histone acetylation, or hypersensitive site formation at a fourth DNase I-hypersensitive site 2 kb downstream of the TMS1 CpG island. The data indicate that there are sites of protein binding and/or structural transitions that define the boundaries of the unmethylated CpG island in normal cells and that aberrant methylation overcomes these boundaries to direct a local change in chromatin structure, resulting in gene silencing.  相似文献   

20.
Gan L  Lee I  Smith R  Argonza-Barrett R  Lei H  McCuaig J  Moss P  Paeper B  Wang K 《Gene》2000,257(1):119-130
The human kallikrein gene cluster, located in the chromosome band 19q13, contains several tissue-specific serine protease genes including the prostate-specific KLK2, KLK3 and prostase genes. To further characterize the gene cluster, we have mapped, sequenced, and analyzed the genomic sequence from the region. The results of EST database searches and GENSCAN gene prediction analysis reveal 13 serine protease genes and several pseudogenes in the region. Expression analysis by RT-PCR indicates that most of these protease genes are expressed only in a subset of the 35 different normal tissues that have been examined. Several protease genes expressed in skin show higher expression levels in psoriatic lesion samples than in non-lesional skin samples from the same patient. This suggests that the imbalance of a complex protease cascade in skin may contribute to the pathology of disease. The proteases, excluding the kallikrein genes, share approximately 40% of their sequences suggesting that the serine protease gene cluster on chromosome 19q13 arose from ancient gene duplications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号