首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several series of 2-aryl or heterocyclic-imidazoline compounds have been prepared and evaluated in vitro as imidazoline sites (I1 and I2) and alpha-adrenergic (alpha1 and alpha2) receptor ligands. Their pKi values indicate that linkage of the imidazoline moiety at the 2-position with an aromatic substituent dramatically decreases alpha-adrenergic affinity. I1 sites are more accessible by phenyl imidazolines substituted by a methyl or a methoxy group at the ortho or meta position. Indeed, 2-(2'-methoxyphenyl)-imidazoline (17) is one of the best I1 ligands ever reported (pKi = 8.53 and I1/I2 > 3388). On the other hand, I2 selectivity increases in the presence of a methyl group in the para position. The original compound, 2-(3'-fluoro-4'-tolyl)-imidazoline (31) is a new potent ligand for the I2 sites with high selectivity (pKi = 8.53 and I2/I1 > 3388).  相似文献   

2.
The imidazoline-type compound, MPV-1743, has been found to activate nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of the genetically obese Zucker rats. The regulation of NST in BAT is linked to the catecholamine metabolism, and the imidazoline I2-binding sites have been found on the monoamine oxidase, a catecholamine metabolising enzyme. In this study, the I2-binding sites of hamster BAT have been characterised using a receptor binding assay with 3H-idazoxan as a radioligand, and the interaction of MPV-1743 with these I2-binding sites has been studied using the enantiomers of MPV 1743, that is, MPV 2088 and MPV 2089. Cirazoline was used to determine the specific binding of 3H-idazoxan to the imidazoline I2-binding sites. Rauwolscine was added in the 3H-idazoxan binding assay in order to inhibit any binding to potential alpha2-adrenergic sites. In the presence of rauwolscine mask 3H-Idazoxan labelled a population of non-adrenergic binding sites expressing the properties of the imidazoline I2b-receptor subtype similar to that found in the rat liver (cirazoline > guanabenz = amiloride > clonidine). The binding of 3H-idazoxan to the I2b-binding sites could be displaced by the imidazole compounds with the following affinities: detomidine (KiHigh 9.2 nM; KiLow 3200 nM), MPV-2088 (KiHigh 19 nM; IKiLow 760 nM) and MPV-2089 (KiHigh 190 nM; KiLow 1300 nM), atipamezole (3500 nM) and dexmedetomidine (Ki 8400 nM). These results have shown that the hamster BAT contains the imidazoline I2b-binding sites with heterogeneous binding properties for some test compounds. In addition, the enantiomers of MPV 1743, that is, MPV 2088 and MPV 2089, had high affinity to these BAT imidazoline I2b-binding sites. Therefore, it is suggested that the regulation of NST in the hamster BAT may be an attractive model to study the role of imidazoline I2b-binding sites.  相似文献   

3.
Alpha series of novel 3,6-diazabicyclo[3.1.1]heptane derivatives 4a-f was synthesized and their affinity and selectivity towards alpha4beta2 and alpha7 nAChR subtypes were evaluated. The results of the current study revealed a number of compounds (4a, 4b and 4c) having a very high affinity for alpha4beta2 (K(i) at alpha4beta2 ranging from 0.023 to 0.056 nM) versus alpha7 nAChR subtypes; among these compounds, the 3-(6-bromopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptane 4c was found to be the most alpha7alpha4beta2 selective term in receptor binding assays (alpha7alpha4beta2=1295). Moreover, compound 4d also had high affinity for the alpha4beta2 nAChR subtype (K(i)=1.2 nM) with considerably high selectivity (alpha7/alpha4beta2=23300).  相似文献   

4.
5.
Methylated analogues of imidazoline related compounds (IRC) were prepared; their abilities to bind I(1) imidazoline receptors (I(1)Rs), I(2) imidazoline binding sites (I(2)BS) and α(2)-adrenoceptor subtypes (α(2)ARs) were assessed. Methylation of the heterocyclic moiety of IRC resulted in a significant loss of α(2)AR affinity. Amongst the selective ligands obtained, LNP 630 (4) constitutes the first highly selective I(1)R agent showing hypotensive activity after intravenous administration.  相似文献   

6.
alpha 2-Adrenergic receptors recognize a number of molecules with diverse chemical structures, including the yohimban diastereoisomers yohimbine and rauwolscine, catecholamines, guanidinium analogs, and imidazolines, such as clonidine. The affinity of the receptor protein for some of these ligands can vary by 10-100-fold among various tissues and species, suggesting a heterogeneous class of binding sites. Certain cellular effects elicited by the compounds possessing an imidazoline or guanidinium moiety may actually be mediated by a membrane receptor distinct from the alpha 2-adrenergic receptor. To determine whether this imidazoline/guanidinium receptive site (IGRS) and the alpha 2-adrenergic receptor represent distinct proteins, we solubilized and partially characterized the two binding sites in rabbit kidney. This tissue expresses both alpha 2-adrenergic receptors and high affinity imidazoline/guanidinium binding sites, the latter which are rauwolscine-insensitive but can be identified with the benzodioxan [3H]idazoxan. The IGRS and alpha 2-adrenergic receptor in rabbit kidney exhibit distinct ligand recognition properties, which are maintained after solubilization and partial purification. In addition, the two receptors can be physically separated by heparin-agarose or lectin affinity chromatography indicating that the two binding sites are distinct entities. [3H]Idazoxan binding is trypsin-sensitive, indicating that the IGRS is a protein rather than a lipid component of the plasma membrane. [3H]Idazoxan binding is not inhibited by endogenous agonists for known neurotransmitter receptors. However, the IGRS does recognize clonidine-displacing substance, a small non-catechol compound isolated from calf brain, suggesting the existence of a previously uncharacterized hormonal/neurotransmitter receptor system.  相似文献   

7.
2-(4,5-Dihydroimidazol-2-yl)benzimidazoles have been identified as selective imidazoline I2/alpha2-adrenoceptor ligands. 4-Methyl (2) and 4-chloro (4) derivatives display I2 affinity at nanomolar concentration (Ki=4.4 and 17.7 nM, respectively) and high I2/alpha2 selectivity ratio=4226 and 5649, respectively. An evidence has been obtained that pKa value influences considerably the I2/alpha2-selectivity ratio of this class of imidazoline I2 receptor ligands.  相似文献   

8.
1,2,3,4-Tetrahydropyrazino[1,2-a]indoles are described as a novel class of I(2) imidazoline receptor ligands. In particular, 8-methoxy-1,2,3,4-tetrahydropyrazino[1,2-a]indole (8-OMe THPI; 3c) binds with high affinity at I(2) imidazoline receptors (K(i)=6.2 nM) and with exceptional (> or =1000-fold) selectivity relative to its affinity for I(1) imidazoline receptors, alpha(2)adrenergic receptors, and 5-HT(2A) and 5-HT(2C) serotonin receptors.  相似文献   

9.
Solid-phase synthesis and SAR of integrin alpha(V)beta3-receptor antagonists containing a urea moiety as non-basic guanidine mimetic are described. The most potent compounds exhibited IC(50) values towards alpha(V)beta3 in the nanomolar range and high selectivity versus related integrins like alpha(IIb)beta3. For selected examples efficacy in functional cellular assays is demonstrated.  相似文献   

10.
We recently showed that at desensitized muscle nicotinic receptors, epibatidine selects by 300-fold between the two agonist binding sites. To determine whether receptors in the resting, activatible state show similar site selectivity, we studied epibatidine-induced activation of mouse fetal and adult receptors expressed in 293 HEK cells. Kinetic analysis of single-channel currents reveals that (-)-epibatidine binds with 15-fold selectivity to sites of adult receptors and 75-fold selectivity to sites of fetal receptors. For each receptor subtype, site selectivity arises solely from different rates of epibatidine dissociation from the two sites. To determine the structural basis for epibatidine selectivity, we introduced mutations into either the gamma or the delta subunit and measured epibatidine binding and epibatidine-induced single-channel currents. Complexes formed by alpha and mutant gamma(K34S+F172I) subunits bind epibatidine with increased affinity compared to alphagamma complexes, whereas the kinetics of alpha2betadeltagamma(K34S+F172I) receptors reveal no change in affinity of the low-affinity site, but increased affinity of the high-affinity site. Conversely, complexes formed by alpha and mutant delta(S36K+I178F) subunits bind epibatidine with decreased affinity compared to alphadelta complexes, whereas the kinetics of alpha2betagammadelta(S36K+I178F) and alpha2betaepsilondelta(S36K+I178F) receptors show markedly reduced sensitivity to epibatidine. The overall data show that epibatidine activates muscle receptors by binding with high affinity to alphagamma and alphaepsilon sites, but with low affinity to the alphadelta site.  相似文献   

11.
Synthesis and SARs of new integrin alpha(V)beta(3) antagonists based on an N-substituted dibenzazepinone scaffold are described. Variation of spacer and guanidine mimetic led to potent compounds exhibiting an IC(50) towards alpha(V)beta(3) in the nanomolar range, high selectivity versus integrin alpha(IIb)beta(3) and efficacy in functional cellular assays.  相似文献   

12.
A series of 3(2H)-pyridazinone derivatives was evaluated for their affinity in vitro towards alpha1-alpha2-adrenoceptors by radioligand receptor binding assays. All target compounds showed good affinities for the alpha1-adrenoceptor (with Ki values in the subnanomolar range), and a gradual increase in affinity was observed by increasing the polymethylene chain length of this series up to a maximum of six and seven carbon atoms, when the fragment 4-[2-(2-methoxyphenoxy)-ethyl]-1-piperazinyl is linked in 5 position of the 3(2H)-pyridazinone ring, while a slight decrease was found for the higher homologues. Increasing the chain length when the 4-[2-(2-methoxyphenoxy)-ethyl]-1-piperazinyl group is linked in 6 position of the 3(2H)-pyridazinone ring, had a different effect: there is the highest affinity when the polymethylene chain is of four carbon atoms. The alkylic chain, a spacer between the two major constituents of the molecule, can influence the affinity and the selectivity.  相似文献   

13.
We describe the effect of eight different imidazoline/guanidinium compounds on the settlement and metamorphosis of larvae of the barnacle Balanus improvisus. These agents were chosen on the basis of their similar pharmacological classification in vertebrates and their chemical similarity to medetomidine and clonidine, previously described as highly potent settlement inhibitors (nanomolar range). Seven of the tested compounds were found to inhibit settlement in a dose-dependent manner in concentrations ranging from 100 nM to 10 microM without any significant lethal effects. In vertebrate systems these substances have overlapping functions and interact with both alpha-adrenoceptors as well as imidazoline binding sites. Antagonizing experiments using the highly specific alpha(2)-antagonist methoxy-idazoxan or agmatine (the putative endogenous ligand at imidazoline receptors) were performed to discriminate between putative pharmacological mechanisms involved in the inhibition of cyprid settlement. Agmatine was not able to reverse the effect of any of the tested compounds. However, methoxy-idazoxan almost completely abolished the settlement inhibition mediated by guanabenz (alpha(2)-agonist, I(2) ligand), moxonidine (alpha(2)-agonist, I(1) ligand) and tetrahydrozoline (alpha-agonist, I(2) ligand). The actions of cirazoline (alpha(1)-agonist, I(2) ligand) BU 224 (I(2) ligand) and metrazoline (I(2) ligand) were not reversed by treatment with methoxy-idazoxan. These results suggest that the settlement inhibition evoked by the I(2) ligands and alpha(2)-agonists used in this study of the neurologically simple but well-organized barnacle larva is mediated through different physiological targets important in the overall settlement process.  相似文献   

14.
A novel (4,5-dihydroimidazol-2-yl)-biphenylamine series of 5-HT(7) agonist compounds was developed from a structurally related lead compound 1. The newly discovered series is exemplified by compound 2 that possesses high affinity for 5-HT(7) receptors and shows intrinsic agonist activity in functional assays. This new series has significant alpha(1) and alpha(2) activities perhaps due to the presence of the 2-aminoimidazoline moiety.  相似文献   

15.
A series of bis-nicotinium, bis-pyridinium, bis-picolinium, bis-quinolinium and bis-isoquinolinium compounds was evaluated for their binding affinity at nicotinic acetylcholine receptors (nAChRs) using rat brain membranes. N,N'-Decane-1,12-diyl-bis-nicotinium diiodide (bNDI) exhibited the highest affinity for [(3)H]nicotine binding sites (K(i)=330 nM), but did not inhibit [(3)H]methyllycaconitine binding (K(i) >100 microM), indicative of an interaction with alpha4beta2*, but not alpha7* receptor subtypes, respectively. Also, bNDI inhibited (IC(50)=3.76 microM) nicotine-evoked (86)Rb(+) efflux from rat thalamic synaptosomes, indicating antagonist activity at alpha4beta2* nAChRs. N,N'-Dodecane-1,12-diyl-bis-quinolinium dibromide (bQDDB) exhibited highest affinity for [(3)H]methyllycaconitine binding sites (K(i)=1.61 microM), but did not inhibit [(3)H]nicotine binding (K(i)>100 microM), demonstrating an interaction with alpha7*, but not alpha4beta2* nAChRs. Thus, variation of N-n-alkyl chain length together with structural modification of the azaaromatic quaternary ammonium moiety afforded selective antagonists for the alpha4beta2* nAChR subtype, as well as ligands with selectivity at alpha7* nAChRs.  相似文献   

16.
A series of 8-substituted xanthines were synthesized and their affinity in vitro towards A1, A2A-adenosine receptors was evaluated by radioligand receptor binding assays. All compounds showed a greater affinity and selectivity towards the A1-adenosine receptor than theophylline. The compounds in which the n-proyl group is in 1-position of the xanthine nucleus and the pyridazinone system in 8-position is linked through a chain of two or four carbon atoms, showed the highest affinity and selectivity.  相似文献   

17.
A series of ring-substituted (i.e., methoxy and bromo) 3,4-dihydro- and 1,2,3,4-tetrahydro-beta-carbolines was examined at I(2) imidazoline receptors, as was the effect of ring-opening, ring-expansion, and translocation of the piperidinyl nitrogen atom. Several analogues were identified that bind with K(i) <20 nM at I(2) sites and with reduced affinity at alpha(2)-adrenergic receptors, and 1,2,3,4-tetrahydro-gamma-carbolines were identified as a novel class of I(2) imidazoline receptor ligand.  相似文献   

18.
The design and synthesis of novel integrin alpha(V)beta(3) antagonists based on a 1,5- or 2,5-substituted tetrahydrobenzaezpinone core is described. In vitro activity of respective compounds was determined via alpha(V)beta(3) binding assay, and selected derivatives were submitted to further characterization in functional cellular assays. SAR was obtained by modification of the benzazepinone core, variation of the spacer linking guanidine moiety and core, and modification of the guanidine mimetic. These efforts led to the identification of novel alpha(V)beta(3) inhibitors displaying potency in the subnanomolar range, selectivity versus alpha(IIb)beta(3) and functional efficacy in relevant cellular assays. A method for the preparation of enantiomerically pure derivatives was developed, and respective enantiomers evaluated in vitro. Compounds 31 and 37 were assessed for metabolic stability, resorption in the Caco-2 assay and pharmacokinetics.  相似文献   

19.
[3H]-RX 781094 and [3H]-rauwolscine, two potent alpha 2-adrenergic antagonists, were used to characterize alpha 2 receptor in basolateral membranes from rabbit kidney. However, the following findings suggest that the imidazoline [3H]-RX 781094 binds to an heterogeneous population of binding sites: 1) dissociation plot was biphasic with a fast and slow component, 2) in saturation experiments, [3H]-RX 781094 labels 3.5 more binding sites than [3H]-rauwolscine (p less than 0.02), 3) competition studies showed that molecules with imidazoline structure completely inhibited the [3H] RX 781094 binding; in contrast, only 25% of binding was affected by non-imidazoline alpha 2 adrenergic compounds. These results suggest that in basolateral membranes from rabbit kidney, [3H] RX781094 labels alpha 2 adrenergic and non-adrenergic receptors which might be imidazoline-preferring binding sites.  相似文献   

20.
The synthesis and biological evaluation of a new series of bioisosteric phentolamine analogs are described. Replacement of the carbon next to the imidazoline ring of phentolamine with a nitrogen atom provides compounds (2, 3) that are about 1.6 times and 4.1 times more potent functionally than phentolamine on rat alpha1-adrenergic receptors, respectively. In receptor binding assays, the affinities of phentolamine and its bioisosteric analogs were determined on the human embryonic kidney (HEK) and Chinese Hamster ovary (CHO) cell lines expressing the human alpha1- and alpha2-AR subtypes, respectively. Analogs 2 and 3, both, displayed higher binding affinities at the alpha2- versus the alpha1-ARs, affinities being the least at the alpha1B-AR. Binding affinities of the methoxy ether analog 2 were greater than those of the phenolic analog 3 at all six alpha-AR subtypes. One of the nitrogen atoms in the imidazoline ring of phentolamine was replaced with an oxygen atom to give compounds 4 and 5, resulting in a 2-substituted oxazoline ring. The low functional antagonist activity on rat aorta, and binding potencies of these two compounds on human alpha1A- and alpha2A-AR subtypes indicate that a basic functional group is important for optimum binding to the alpha1- and alpha2A-adrenergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号