首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The precursor of the major light-harvesting chlorophylla/b-proteins of photosystem II was synthesizedin vitro from a gene fromLemna gibba. When the labelled precursor was incubated with developing barley plastids, the precursor and the processed polypeptide were incorporated in the thylakoids in proportions that varied depending on the developmental stage of plastids. At early stages of development most of the precursor associated with the thylakoids could be removed by washing with 0.1 M NaOH, while in more mature plastids most of its was resistant to a NaOH wash. Insertion of the precursor into thylakoids required the presence of a stromal factor and Mg-ATP. The stromal factor is probably a protein. The insertion reaction has an optimal temperature of 25°C and a pH of 8. The appearance of the stromal factor and the thylakoid membrane's receptivity for the insertion of the precursor depended on the stage of plastid development. These observations are consistent with the hypothesis that the insertion of the precursor into the thylakoid prior to its proteolytic processing, is one of the steps involved in the assembly of the light-harvesting complex of photosystem II.  相似文献   

2.
The precursor of photosystem I (PSI) subunit II (pre-subunit II) synthesized in vitro, was found to bind to the holo-PSI complex, both within the thylakoids and outside, after detergent extraction of PSI from the membranes. Chloroplast stromal fraction added to the purified PSI complexes, containing the labeled pre-subunit II, induced the processing of the precursor to the mature form. This implies that processing can occur within the isolated complex, after the integration of the precursor. The results presented suggest that certain aspects of biogenesis of membranal protein complexes can be studied in detergent-extracted purified complexes.  相似文献   

3.
When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane.  相似文献   

4.
The events that follow the import of pLHCPIIb, the apoprotein precursor of the major light-harvesting complex of photosystem II, were studied in intact pea chloroplasts. The distribution of the events of insertion into the membrane, and processing, to yield the mature form (LHCP) between stromal and granal lamellae regions of the thylakoids were followed. pLHCP was preferentially inserted into stromal lamellae (SL) from which it migrated to granal lamellae (GL). Migration occurred before or after processing, suggesting that migration and processing are independent of each other. When migration was slowed down, LHCP accumulated in SL. Prolonged inhibition of migration induced degradation of LHCP that had accumulated in SL, whereas inhibition of processing did not affect the migration of pLHCP into GL. A small difference in electrophoretic mobility was noted between LHCP in SL and in GL. The predominant mature form in SL migrated more slowly than LHCP from GL. When thylakoids were subjected to trypsin, all of the LHCP embedded in SL underwent cleavage, whereas up to 60% of the radioactive LHCP in GL was resistant to the enzyme. The possible implications of the differences in size and in the sensitivity to trypsin of LHCP are discussed.  相似文献   

5.
A barley gene encoding the major light-harvesting chlorophyll a/b-binding protein (LHCP) has been sequenced and then expressed in vitro to produce a labelled LHCP precursor (pLHCP). When barley etiochloroplasts are incubated with this pLHCP, both labelled pLHCP and LHCP are found as integral thylakoid membrane proteins, incorporated into the major pigment-protein complex of the thylakoids. The presence of pLHCP in thylakoids and its proportion with respect to labelled LHCP depends on the developmental stage of the plastids used to study the import of pLHCP. The reduced amounts of chlorophyll in a chlorophyll b-less mutant of barley does not affect the proportion of pLHCP to LHCP found in the thylakoids when import of pLHCP into plastids isolated from the mutant plants is examined. Therefore, insufficient chlorophyll during early stages of plastid development does not seem to be responsible for their relative inefficiency in assembling pLHCP. A chase of labelled pLHCP that has been incorporated into the thylakoids of intact plastids, by further incubation of the plastids with unlabelled pLHCP, reveals that the pLHCP incorporated into the thylakoids can be processed to its mature size. Our observations strongly support the hypothesis that after import into plastids, pLHCP is inserted into thylakoids and then processed to its mature size under in vivo conditions.  相似文献   

6.
The PSI-G subunit of photosystem I (PSI) is an 11-kDa membrane protein that plays an important role in electron transport between plastocyanin and PSI and is involved in the stability of the PSI complex. Within the complex, the PSI-G subunit is bound to PSI-B and is in contact with Lhca1. PSI-G has two transmembrane spans connected by a positively charged stromal loop. The loop is inaccessible to proteases, indicating a tightly bound location within the PSI complex. Here, we have studied the insertion mechanism and assembly of PSI-G. We show that the protein inserts into thylakoids by a direct or "spontaneous" pathway that does not involve the activities of any known chloroplast protein-targeting machinery. Surprisingly, the positively charged stromal loop region plays a major role in this process. Mutagenesis or deletions within this region almost invariably lead to a marked lowering of insertion efficiency, strongly indicating a critical role for the loop in the organization of the transmembrane regions prior to or during membrane insertion. Finally, we have examined the assembly of newly inserted PSI-G into the PSI complex, since very little is known of the assembly pathway for this large multimeric complex. Interestingly, we find that inserted PSI-G can be found within the full PSI complex within the import assay time frame after insertion into thylakoids, strongly suggesting that PSI-G normally associates at the end of the assembly process. This is consistent with its location on the periphery of the complex.  相似文献   

7.
The insertion of a protein into a lipid bilayer usually involves a short signal sequence and can occur either during or after translation. A light-harvesting chlorophyll a/b-binding protein (LHCP) is synthesized in the cytoplasm of plant cells as a precursor and is post-translationally imported into chloroplasts where it subsequently inserts into the thylakoid membrane. Only mature LHCP is required for insertion into the thylakoid. To define which sequences of the mature protein are necessary and sufficient for thylakoid integration, fusion and deletion proteins and proteins with internal rearrangements were synthesized and incubated with isolated thylakoids and stroma. No evidence is found for the existence of a short signal sequence within LHCP, and, with the exception of the amino terminus and a short lumenal loop, the entire mature protein with consecutively ordered alpha-helices is required for insertion into thylakoid membranes. The addition of positive charges into stromal but not lumenal segments permits the insertion of mutant LHCPs into isolated thylakoids. Replacement of the LHCP transit peptide with the transit peptide from plastocyanin has no effect on LHCP insertion and does not restore insertion of the lumenal charge addition mutants.  相似文献   

8.
The formation of the lateral distribution of the major antenna complex of photosystem II (LHCIIb) between the granal and stromal lamellae was studied. Specifically, the localization of the insertion and the assembly of the precursor of the apoprotein of LHCIIb (pLHCP) were studied with isolated thylakoids. After insertion of pLHCP into isolated thylakoids, fractionation of the latter into granal and stromal lamellar was performed. At 25 °C most of the precursor was located in the granal lamellae, although both highly purified granal and stromal lamellar fractions demonstrated a similar capability to insert pLHCP. When the insertion reaction to the thylakoids was performed at 10 °C, followed by their separation into stromal and granal lamellae, the labelled pLHCP was localized in the stromal ones. To examine whether pLHCP inserts into both granal and stromal lamellae, or preferentially into stromal lamellae and subsequently migrating to granal lamellae, a chase experiment was performed. Insertion of pLHCP at 10 °C was followed by chase of the radioactive precursor with excess of non-radioactive pLHCP at 25 °C. From the results presented it is evident that the level of pLHCP in stromal lamellae was gradually reduced, while it gradually accumulated in the granal lamellae. Furthermore, the pLHCP in the stromal lamellae was found to be in a free form, while after migrating to the granal lamellae it assembled into the pigmented LHCIIb.  相似文献   

9.
Import, targeting, and processing of a plant polyphenol oxidase.   总被引:14,自引:4,他引:10  
A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo.  相似文献   

10.
The light-harvesting complex of photosystem II (LHC II) contains one major (LHC IIb) and at least three minor chlorophyll-protein components. The apoproteins of LHC IIb (LHCP) are encoded by nuclear genes and synthesized in the cytoplasm as a higher molecular weight precursor(s) (pLHCP). Several genes coding for pLHCP have been cloned from various higher plant species. The expression of these genes is dependent upon a variety of factors such as light, the developmental stage of the plastids and the plant. After its synthesis in the cytoplasm, pLHCP is imported into plastids, inserted into thylakoids, processed to its mature form, and assembled into LHC IIb. The pathway of assembly of LHC IIb in the thylakoid membranes is currently being investigated in several laboratories. We present a model that gives some details of the steps in the assembly process. Many of the steps involved in the synthesis and assembly are dependent on light and the stage of plastid development.Abbreviations PS Photosystem - LHC II Light-harvesting complex of PS II - LHCP Apoproteins of LHC IIb - pLHCP Precursor of LHCP - PAGE Polyacrylamide gel electrophoresis  相似文献   

11.
12.
In order to determine if the cognate transit peptide of the light-harvesting chlorophyll a/b-binding protein (LHCP) is essential for LHCP import into the chloroplast and proper localization to the thylakoids, it was replaced with the transit peptide of the small subunit (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase, a stromal protein. Wheat LHCP and S genes were fused to make a chimeric gene coding for the hybrid precursor, which was synthesized in vitro and incubated with purified pea chloroplasts. My results show that LHCP is translocated into chloroplasts by the S transit peptide. The hybrid precursor was processed; and most importantly, mature LHCP did not remain in the stroma, but was inserted into thylakoid membranes, where it normally functions. Density gradient centrifugation showed no LHCP in the envelope fraction. Hence, the transit peptide of LHCP is not required for intraorganellar routing, and LHCP itself contains an internal signal for localization to the correct membrane compartment.  相似文献   

13.
Many of the thylakoid membrane proteins of plant and algal chloroplasts are synthesized in the cytosol as soluble, higher molecular weight precursors. These precursors are post-translationally imported into chloroplasts, incorporated into the thylakoids, and proteolytically processed to mature size. In the present study, the process by which precursors are incorporated into thylakoids was reconstituted in chloroplast lysates using the precursor to the light-harvesting chlorophyll a/b protein (preLHCP) as a model. PreLHCP inserted into thylakoid membranes, but not envelope membranes, if ATP was present in the reaction mixture. Correct integration into the bilayer was verified by previously documented criteria. Integration could also be reconstituted with purified thylakoid membranes if reaction mixtures were supplemented with a soluble extract of chloroplasts. Several other thylakoid precursor proteins in addition to preLHCP, but no stromal precursor proteins, were incorporated into thylakoids under the described assay conditions. These results suggest that the observed in vitro activity represents in vivo events during the biogenesis of thylakoid proteins.  相似文献   

14.
DNA sequences encoding ribulose 1,5-bisphosphate carboxylase small subunit precursor from Pisum sativum L. have been transcribed from plasmids containing the SP6 promoter, and translated in a wheat germ cell-free system. The small subunit precursor polypeptide, its N-terminal leader sequence (transit peptide) and the mature small subunit have each been synthesized independently from three different plasmid constructs. The precursor polypeptide is imported into isolated pea chloroplasts and processed to the mature small subunit by a stromal proteinase. The mature polypeptide is neither imported, nor subject to proteolysis by stromal extracts. The transit peptide alone is very rapidly degraded by a stromal proteinase activity which can be inhibited by EDTA or 1,10-phenanthroline. The use of these gene constructs helps to establish the crucial role of the transit peptide in protein import into the chloroplast.  相似文献   

15.
Cline K 《Plant physiology》1988,86(4):1120-1126
The apoprotein of the light-harvesting chlorophyll a/b protein (LHCP) is a major integral thylakoid membrane protein that is normally complexed with chlorophyll and xanthophylls and serves as the antenna complex of photosystem II. LHCP is encoded in the nucleus and synthesized in the cytosol as a higher molecular weight precursor that is subsequently imported into chloroplasts and assembled into thylakoids. In a previous study it was established that the LHCP precursor can integrate into isolated thylakoid membranes. The present study demonstrates that under conditions designed to preserve thylakoid structure, the inserted LHCP precursor is processed to mature size, assembled into the LHC II chlorophyll-protein complex, and localized to the appressed thylakoid membranes. Under these conditions, light can partially replace exogenous ATP in the membrane integration process.  相似文献   

16.
The small subunit (SSU) of Rubisco is synthesized in the cytosol in a precursor form. Upon import into the chloroplast, it is proteolytically processed at a Cys-Met bond to yield the mature form of the protein. To assess the importance of the Met residue for recognition and processing by the stromal peptidase, we substituted this residue with either Thr, Arg or Asp. The mutant precursor proteins were imported into isolated chloroplasts, and the products of the import reactions were analyzed. Mutants containing Thr or Arg residues at the putative processing site were processed to a single peptide, comigrating with the wild-type protein. N-terminal radio-sequencing revealed that these mutants were processed at the Cys-Thr and the Cys-Arg bond, respectively. After import of the Asp-containing mutant, four processed forms of the protein were observed. Analysis of the most abundant one, co-migrating with the wild-type protein, demonstrated that this species was also a product of correct processing, at the Cys-Asp bond. All the correctly processed peptides were found to be associated with the holoenzyme of Rubisco, and remained stable within the chloroplast, like the wild-type protein. The results of this study, together with previous ones, suggest that proper recognition and processing of the SSU precursor are more affected by residues N-terminal to the processing site than by the residue on the C-terminal side of this site.  相似文献   

17.
In higher plants, the chloroplastic protein plastocyanin is synthesized as a transit peptide-containing precursor by cytosolic ribosomes and posttranslationally transported to the thylakoid lumen. En route to the lumen, a plastocyanin precursor is first imported into chloroplasts and then further directed across the thylakoid membrane by a second distinct transport event. A partially processed form of plastocyanin is observed in the stroma during import experiments using intact chloroplasts and has been proposed to be the translocation substrate for the second step (Smeekens, S., Bauerle, C., Hageman, J., Keegstra, K., and Weisbeek, P. (1986) Cell 46, 365-375). To further characterize this second step, we have reconstituted thylakoid transport in a system containing in vitro-synthesized precursor proteins and isolated thylakoid membranes. This system was specific for lumenal proteins since stromal proteins lacking the appropriate targeting information did not accumulate in the thylakoid lumen. Plastocyanin precursor was taken up by isolated thylakoids, proteolytically processed to mature size, and converted to holo form. Translocation was temperature-dependent and was stimulated by millimolar levels of ATP but did not strictly require the addition of stromal factors. We have examined the substrate requirements of thylakoid translocation by testing the ability of different processed forms of plastocyanin to transport in the in vitro system. Interestingly, only the full-length plastocyanin precursor, not the partially processed intermediate form, was competent for transport in this in vitro system.  相似文献   

18.
The D1 polypeptide of photosystem II (PSII) is synthesized as a precursor that is processed by cleavage at the carboxyl terminus during assembly of the active PSII complex. A mutant of the green alga Scenedesmus obliquus, LF-1, inactive in water-splitting, lacks the D1 processing activity but assembles otherwise normal PSII complexes containing the precursor D1 molecule. We have isolated and partially purified a soluble protease from sonicated thylakoids of both wild-type S. obliquus and Pisum sativum which will process the precursor D1 molecule in PSII-enriched membranes from the LF-1 mutant to the mature size. After processing (but not before), photoactivation of these PSII membranes in the presence of manganese restores water-splitting to levels seen after photoactivation of PSII membranes from dark-grown, wild-type, cells. The protease is unable to process D1 in intact thylakoids from the LF-1 mutant but processes D1 if present during sonication of the thylakoids, indicating that processing of the carboxyl-terminal extension of D1 occurs in the lumen of the thylakoid. The processing protease from both S. obliquus and P. sativum is a single subunit enzyme of native molecular mass 33-35 kDa. Processing rate is optimal at pH 6.5. Processing in vitro is evident within 5 min and is markedly inhibited by millimolar concentrations of divalent cations (Cu, Zn greater than Mn greater than Ca, Mg) but not by any known inhibitors of the major classes of proteases. The protease is inactive against the precursors of other thylakoidal proteins and is thus distinct from the thylakoidal amino-terminal processing enzyme involved in the removal of transit peptides from cytoplasmically-synthesised proteins imported into the thylakoid lumen.  相似文献   

19.
The presence of a precursor form of β-glucuronidase, with a subunit molecular weight of 75,000 was demonstrated in mouse kidney. This was later processed to the mature form, with subunit molecular weight of 71,500. Tissue fractionation revealed that the precursor was associated with the microsomes whereas the mature form was associated with the lysosomes. In mice lacking egasyn both forms of β-glucuronidase were present, but the rate of processing was elevated compared to normal.  相似文献   

20.
The 33 kd protein of the photosynthetic oxygen-evolving complex is synthesized in the cytoplasm as a larger precursor and transported into the thylakoid lumen via a stromal intermediate form. In this report we describe a reconstituted system in which the later stages of this import pathway can be studied in isolation. We demonstrate import of the 33 kd protein, probably as the intermediate form, into isolated pea thylakoids by a mechanism which is stimulated by the addition of ATP. The imported protein is processed to the mature size and is resistant to digestion by proteases. The thylakoidal protein transport system is specific in that non-chloroplast proteins and precursors of stromal proteins are not imported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号