首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The N-terminal region of the cathepsin D-like aspartic protease from the human filarial parasite Onchocerca volvulus was expressed as His-tag fusion protein. Light and electron microscopic immunohistology using antibodies against the recombinant protein showed labeling of lysosomes in the hypodermis and epithelia of the intestine and the reproductive organs of Onchocerca. While developing oocytes were negative, mature oocytes and early morulae showed strong labeling. In older embryos and mature microfilariae, stained lysosomes were only found in a few cells. Cell death in degenerating microfilariae of patients untreated and treated with microfilaricidal drugs was associated with strong expression of aspartic protease. IgG1, IgG4, and IgE antibodies reactive with the recombinant protein were demonstrated in sera from onchocerciasis patients indicating exposure and recognition of the enzyme by the host's defence system. The aspartic protease of O. volvulus appears to function in intestinal digestion and tissue degradation of the filaria.  相似文献   

5.
水稻丝氨酸蛋白酶S8基因家族在水稻的生长发育过程中起着重要的调控作用。本研究利用公共数据库资源,分析水稻中丝氨酸蛋白酶S8基因家族,在水稻12条染色体上找到46个该类基因。通过其结构分析发现,每个基因的内含子数目从0到10各不相同,但氨基酸序列是非常保守的,都有催化活性位点和底物结合位点。系统进化树分析显示,这46个基因分为3个亚家族,S8-1亚家族最大。该家族基因的进化主要是通过基因重复复制的方式进行,其表达模式发生了变化,并且多个基因在穗部具有表达。  相似文献   

6.
Xu Y  Yu H  Hall TC 《Plant physiology》1994,106(2):459-467
In rice (Oryza sativa L.), cytosolic triosephosphate isomerase (TPI) is encoded by a single gene. TPI catalyzes a vital step in glycolysis, and RNA blots showed that the tpi gene is expressed in all vegetative tissues (root, culm, and leaves) and in rice suspension cells. No effect of light on expression was detected, but submergence of rice seedlings resulted in elevated levels of TPI mRNA in roots and culms. The 2767-bp 5[prime] upstream sequence of the tpi gene was fused translationally with the [beta]-glucuronidase (gusA) gene, and the resulting construct, TPI-GUS, was found to express constitutive, high levels of GUS activity in transgenic tobacco (Nicotiana tabacum) plants. However, the same construct yielded no GUS activity in stably transformed rice plants, and RNA blots showed that no GUS mRNA could be detected even though stable integration of functional copies of the construct was confirmed by Southern blot and genomic polymerase chain reaction analyses. Transient assays using particle bombardment yielded high levels of GUS expression from the TPI-GUS construct in tobacco leaves, but essentially no expression in rice, barley, or maize leaves. When the first intron of the tpi gene was included in the construct (TPI-int1-GUS), transient GUS activity was routinely obtained in rice leaves, revealing that the first intron of the rice tpi gene is crucial for its expression in rice. TPI-int1-GUS also directed transient GUS expression in maize and barley leaves, but little or no activity was obtained from this construct in tobacco, tomato, or soybean leaves. These results with the rice tpi promoter are in accordance with mounting evidence that differences in gene expression exist between monocots and dicots.  相似文献   

7.
8.
9.
10.
Previous work suggested that the aspartic proteinase from Hordeum vulgare (HvAP) would be a vacuolar protein in plant cells. Based on N-terminal sequencing we show that the in vitro-translated protein was translocated into the lumen of microsomal membranes, causing a concomitant removal of 25 amino acid residues from the protein. Vacuoles were purified from barley leaf protoplasts and were shown to contain all of the aspartic proteinase activity found in the protoplasts. This vacuolar localization of HvAP was confirmed with immunocytochemical electron microscopy using antibodies to HvAP in both barley leaf and root cells. In an attempt to discern a function for this protease, we investigated the ability of HvAP to process the C-terminal proregion of barley lectin (BL) in vitro. Prolectin (proBL), expressed in bacteria, was processed rapidly when HvAP was added. Using several means, we were able to determine that 13 amino acid residues at the C terminus of proBL were cleaved off, whereas the N terminus stayed intact during this incubation. Immunohistochemical electron microscopy showed that HvAP and BL are co-localized in the root cells of developing embryos and germinating seedlings. Thus, we propose that the vacuolar HvAP participates in processing the C terminus of BL.  相似文献   

11.
Barley (Hordeum vulgare L.) leaf stripe is caused by the seed-borne fungus Pyrenophora graminea. We investigated microscopically and molecularly the reaction of barley embryos to leaf stripe inoculation. In the resistant genotype NIL3876-Rdg2a, fungal growth ceased at the scutellar node of the embryo, while in the susceptible near-isogenic line (NIL) Mirco-rdg2a fungal growth continued past the scutellar node and into the embryo. Pathogen-challenged embryos of resistant and susceptible NILs showed different levels of UV autofluorescence and toluidine blue staining, indicating differential accumulation of phenolic compounds. Suppression subtractive hybridization and cDNA amplified fragment-length polymorphism (AFLP) analyses of embryos identified P. graminea-induced and P. graminea-repressed barley genes. In addition, cDNA-AFLP analysis identified six pathogenicity-associated fungal genes expressed during barley infection but at low to undetectable levels during growth on artificial media. Microarrays representing the entire set of differentially expressed cDNA-AFLP fragments and 100 barley homologues of previously described defence-related genes were used to study gene expression changes at 7 and 14 days after inoculation in the resistant and susceptible NILs. A total of 171 significantly modulated barley genes were identified and assigned to four groups based on timing and genotype dependence of expression. Analysis of the changes in gene expression during the barley resistance response to leaf stripe suggests that the Rdg2a-mediated response includes cell-wall reinforcement, signal transduction, generation of reactive oxygen species, cell protection, jasmonate signalling and expression of plant effector genes. The identification of genes showing leaf stripe inoculation or resistance-dependent expression sets the stage for further dissection of the resistance response of barley embryo cells to leaf stripe.  相似文献   

12.
Steinernema carpocapsae is an insect parasitic nematode associated with the bacterium Xenorhabdus nematophila. These symbiotic complexes are virulent against the insect host. Many protease genes were shown previously to be induced during parasitism, including one predicted to encode an aspartic protease, which was cloned and analyzed in this study. A cDNA encoding Sc-ASP155 was cloned based on the EST fragment. The full-length cDNA of Sc-ASP155 consists of 955 nucleotides with multiple domains, including a signal peptide (aa1–15), a pro-peptide region (aa16–45), and a typical catalytic aspartic domain (aa71–230). The putative 230 amino acid residues have a calculated molecular mass of 23,812 Da and a theoretical pI of 5.01. Sc-ASP155 blastp analysis showed 40–62% amino acid sequence identity to aspartic proteases from parasitic and free-living nematodes. Expression analysis showed that the sc-asp155 gene was up-regulated during the initial parasitic stage, especially in L3 gut and 6 h induced nematodes. Sequence comparison revealed that Sc-ASP155 was a member of an aspartic protease family and phylogenetic analysis indicated that Sc-ASP155 was clustered with Sc-ASP113. In situ hybridization showed that sc-asp155 was expressed in subventral cells. Additionally, we determined that sc-asp155 is a single-copy gene in S. carpocapsae. Homology modeling showed that Sc-ASP155 adopts a typical aspartic protease structure. The up-regulated Sc-ASP155 expression revealed that this protease could play a role in the parasitic process. In this study, we have cloned the gene and determined the expression of the pepsin-like aspartic protease Sc-ASP155 in S. carpocapsae.  相似文献   

13.
14.
We have investigated the relationship between seed dormancy and abscisic acid (ABA) metabolism in the monocot barley and the dicot Arabidopsis. Whether dormant (D) or non-dormant (ND), dry seed of Arabidopsis and embryos of dry barley grains all had similarly high levels of ABA. ABA levels decreased rapidly upon imbibition, although they fell further in ND than in D. Gene expression profiles were determined in Arabidopsis for key ABA biosynthetic [the 9-cis epoxycarotenoid dioxygenasegene family] and ABA catabolic [the ABA 8'-hydroxylase gene family (CYP707A)] genes. Of these, only the AtCYP707A2 gene was differentially expressed between D and ND seeds, being expressed to a much higher level in ND seeds. Similarly, a barley CYP707 homologue, (HvABA8'OH-1) was expressed to a much higher level in embryos from ND grains than from D grains. Consistent with this, in situ hybridization studies showed HvABA8'OH-1 mRNA expression was stronger in embryos from ND grains. Surprisingly, the signal was confined in the coleorhiza, suggesting that this tissue plays a key role in dormancy release. Constitutive expression of a CYP707A gene in transgenic Arabidopsis resulted in decreased ABA content in mature dry seeds and a much shorter after-ripening period to overcome dormancy. Conversely, mutating the CYP707A2 gene resulted in seeds that required longer after-ripening to break dormancy. Our results point to a pivotal role for the ABA 8'-hydroxylase gene in controlling dormancy and that the action of this enzyme may be confined to a particular organ as in the coleorhiza of cereals.  相似文献   

15.
A cDNA encoding a predicted 15-kDa protein was earlier isolated from sugar-induced genes in rice embryos (Oryza sativa L.) by cDNA microarray analysis. Here we report that this cDNA encodes a novel Ca2+-binding protein, named OsSUR1 (for Oryza sativa sugar-up-regulated-1). The recombinant OsSUR1 protein expressed in Escherichia coli had 45Ca2+-binding activity. Northern analysis showed that the OsSUR1 gene was expressed mainly in the internodes of mature plants and in embryos at an early stage of germination. Expression of the OsSUR1 gene was induced by sugars that could serve as substrates of hexokinase, but expression was not repressed by Ca2+ signaling inhibitors, calmodulin antagonists and inhibitors of protein kinase or protein phosphatase. These results suggested that Os-SUR1 gene expression was stimulated by a hexokinase-dependent pathway not mediated by Ca2+.  相似文献   

16.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. The production of hydrolytic enzymes appears to be a key element in the parasitic process. Among the enzymes released by Trichoderma, the aspartic proteases play a major role. A gene (SA76) encoding an aspartic protease was cloned by 3' rapid amplification of cDNA ends from T. harzianum T88. The coding region of the gene is 1,593 bp long, encoding a polypeptide of 530 amino acids with a predicted molecular mass 55 kDa and a pI of 4.5. The catalytic aspartic residues characteristic of aspartic proteases are conserved with an active-site motif (DSG); however, the DSG in the N-terminal lobe is unusual in that Ser replaced Thr. Northern blot analysis indicated that SA76 was induced in response to different fungal cell walls. Aspartic protease SA76 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (10.5 U mL(-1)) 72 h after induction with galactose. The temperature optimum of the enzyme was 45 degrees C and its pH optimum was 3.5. The culture supernatant of the S. cerevisiae strain that expressed the aspartic protease SA76 was able to inhibit the growth of five phytopathogenic fungi. The inhibition of mycelial growth varied between 7% and 38%.  相似文献   

17.
18.
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.  相似文献   

19.
HvCO9 was characterized to elucidate the barley flowering control mechanisms and to investigate the functional diversification of the barley CONSTANS-like (CO-like) genes in flowering. HvCO9 was located on the same chromosome, 1HL, as Ppd-H2 (HvFT3), which is a positive regulator of short-day (SD) flowering. A phylogenetic analysis showed that HvCO9 was located on the same branch of the CO-like gene tree as rice Ghd7 and the barley and wheat VRN2 genes, which are all negative regulators of flowering. High level HvCO9 expressions were observed under SD conditions, whereas its expression levels were quite low under long-day (LD) conditions. HvCO9 expression correlated with HvFT1 and HvFT2 expression under SD conditions, although no clear effect of HvCO9 on HvFT3 expression, or vice versa, under SD conditions was observed. The over-expression of HvCO9 in rice plants produced a remarkable delay in flowering. In transgenic rice, the expression levels of the flowering-related Ehd1 gene, which is a target gene of Ghd7, and its downstream genes were suppressed, causing a delay in flowering. These results suggest that HvCO9 may act as a negative regulator of flowering under non-inductive SD conditions in barley; this activity is similar to that of rice Ghd7 under non-inductive LD conditions, but the functional targets of these genes may be different. Our results indicate that barley has developed its own pathways to control flowering by using homologous genes with modifications for the timing of expression. Further, it is hypothesized that each pathway may target different genes after gene duplication or species diversification.  相似文献   

20.
Kilian  A.  Chen  J.  Han  F.  Steffenson  B.  Kleinhofs  A. 《Plant molecular biology》1997,35(1-2):187-195
The barley stem rust resistance genes Rpg1 and rpg4 were mapped in barley on chromosomes 1P and 7M, respectively and the syntenous rice chromosomes identified as 6P and 3P by mapping common probes in barley and rice. Rice yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC) and cosmid clones were used to isolate probes mapping to the barley Rpg1 region. The rice BAC isolated with the pM13 probe was a particularly excellent source of probes. A high-resolution map of the Rpg1 region was established with 1400 gametes yielding a map density of 3.6 markers per 0.1 cM. A detailed physical map was established for the rice BAC fragment containing the Rpg1-flanking markers pM13 and B24. This fragment covers a barley genetic distance of 0.6 cM and a rice DNA physical distance of ca. 70 kb. The distribution of barley cross-overs in relation to the rice DNA physical distances was extremely uneven. The barley genetic distance between the pM13 marker and Rpg1 was 0.1 cM per ca. 55 kb, while on the proximal side it was 0.5 cm per ca. 15 kb. Three probes from the distal end of the pM13 BAC mapped 3.0 cm proximal of Rpg1 and out of synteny with rice. These experiments confirm the validity of using large insert rice clones as probe sources to saturate small barley (and other large genome cereals) genome regions with markers. They also establish a note of caution that even in regions of high microsynteny, there may be small DNA fragments that have transposed and are no longer in syntenous positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号